Background: Knowledge of major histocompatibility complex (MHC) composition and distribution in rhesus macaque colonies is critical for management strategies that maximize the utility of this model for biomedical research.

Methods: Variation within the Mamu-A and Mamu-B (class I) and DRB, DQA/B, and DPA/B (class II) regions of 379 animals from the Caribbean Primate Research Center's (CPRC) specific pathogen free (SPF) colony was examined using massively parallel sequencing.

Results: Analyses of the 7 MHC loci revealed a background of Indian origin with high levels of variation despite past genetic bottlenecks. All loci exhibited mutual linkage disequilibria while conforming to Hardy-Weinberg expectations suggesting the achievement of mutation-selection balance.

Conclusion: The CPRC's SPF colony is a significant resource for research on AIDS and other infectious agents. Characterizing colony-wide MHC variability facilitates the breeding and selection of animals bearing desired haplotypes and increases the investigator's ability to understand the immune responses mounted by these animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234078PMC
http://dx.doi.org/10.1111/jmp.12353DOI Listing

Publication Analysis

Top Keywords

major histocompatibility
8
caribbean primate
8
rhesus macaque
8
massively parallel
8
spf colony
8
determination major
4
class
4
histocompatibility class
4
class class
4
class genetic
4

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Background: Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells.

Methods: Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors.

View Article and Find Full Text PDF

Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.

View Article and Find Full Text PDF

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

T cells recognize neoepitope peptide-major histocompatibility complex class I on cancer cells. The strength (or avidity) of the T cell receptor-peptide-major histocompatibility complex class I interaction is a critical variable in immune control of cancers. Here, we analyze neoepitope-specific CD8 cells of distinct avidities and show that low-avidity T cells are the sole mediators of cancer control in mice and are solely responsive to checkpoint blockade in mice and humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!