Single-Molecule Angular Optical Trapping for Studying Transcription Under Torsion.

Methods Mol Biol

Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, USA.

Published: March 2019

Optical tweezers are flexible and powerful single-molecule tools that have been extensively utilized in biophysical studies. With their ability to stretch and twist DNA, and measure its force and torque simultaneously, they provide excellent opportunities to gain novel insights into the function of protein motors and protein-DNA interactions. Recently, a novel DNA supercoiling assay using an angular optical tweezers (AOT) has been developed to investigate torque generation during transcription. Here, we provide a detailed and practical guide to performing this technique. Using bacterial RNA polymerase (RNAP) as an example, we present protocols for constructing and calibrating an AOT instrument, preparing DNA templates, and acquiring and analyzing real-time data for transcription under DNA supercoiling. While these protocols were initially developed with E. coli RNAP, they can be readily adapted to study other DNA-based motor proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8556-2_16DOI Listing

Publication Analysis

Top Keywords

angular optical
8
optical tweezers
8
dna supercoiling
8
single-molecule angular
4
optical trapping
4
trapping studying
4
studying transcription
4
transcription torsion
4
torsion optical
4
tweezers flexible
4

Similar Publications

Unlabelled: Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation.

View Article and Find Full Text PDF

Abnormal eye movements occur early in the course of disease in many ataxias. However, clinical assessments of oculomotor function lack precision, limiting sensitivity for measuring progression and the ability to detect subtle early signs. Quantitative assessment of eye movements during everyday behaviors such as reading has potential to overcome these limitations and produce functionally relevant measures.

View Article and Find Full Text PDF

Observation of Real-Time Spin-Orbit Torque Driven Dynamics in Antiferromagnetic Thin Film.

Adv Mater

January 2025

Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.

In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.

View Article and Find Full Text PDF

Can fundus features tell us something about 3D eye shape?

Ophthalmic Physiol Opt

January 2025

Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.

Purpose: To determine whether imaging features derived from fundus photographs contain 3D eye shape information beyond that available from spherical equivalent refraction (SER).

Methods: We analysed 99 eyes of 68 normal adults in the UK Biobank. An ellipsoid was fitted to the entire volume of each posterior eye (vitreous chamber without the lens)-segmented from magnetic resonance imaging of the brain.

View Article and Find Full Text PDF

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!