Water-soluble ligand protected optically active silver nanostructures were synthesised in a one-step reduction and capping process mediated by thiol-containing biomolecules. The synthesis was performed successfully with d- and l-cysteine and l-glutathione. The chiroptical properties of the obtained nanostructures were investigated by circular dichroism spectroscopy in the ultraviolet and visible wavelength range. They exhibit a g-value of up to 0.7%, which is about one order of magnitude larger compared to particles prepared by citrate reduction followed by a ligand exchange reaction. The structure and composition of the prepared materials were characterised by transmission electron microscopy, energy-dispersive X-ray and X-ray photoelectron spectroscopy. Although these structures do not have a chiral geometry, they show mirror image g-values when capped with d- and l-cysteine. This indicates that the underlying chirality transfer mechanism is based on an electric field polarisation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp02970a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!