The development of the glomerular injury in diabetic nephropathy involves interactions between podocytes, endothelium, and the mesangium. Loss of podocytes is an early and critical step in the development of diabetic nephropathy, and analysis of structural lesions within the mesangium such as mesangiolysis implicate the loss of podocytes as a key mediating event. The BTBR / mouse has proved a useful tool to demonstrate that restoration of podocyte density, once thought to be an absolute barrier to glomerular repair, can be achieved with replacement of the hormone leptin that is constitutively absent in these mice. Restoration of podocyte density is associated with reversal of the structural lesions of morphologically advanced diabetic glomerular injury in this model. This finding, in conjunction with the demonstration in human diabetic patients with morphologically advanced diabetic nephropathy and with long-standing functioning pancreatic transplants of ten years duration that their diabetic nephropathy can be reversed, suggests that restoration of podocyte number and density is an appropriate target for the development of new therapeutics for diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027807 | PMC |
http://dx.doi.org/10.23876/j.krcp.2018.37.2.106 | DOI Listing |
Int J Endocrinol
January 2025
Nephrology Department, Jiangxi Provincial Key Research Laboratory of Traditional Chinese Medicine, Key Research Laboratory of Chronic Renal Failure, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China.
This study aimed to investigate the potential mechanisms of puerarin in alleviating diabetic nephropathy (DKD) in mice. The DKD model was induced by multiple low-dose injections of streptozotocin (STZ) and a high-sugar and high-fat diet in male C57BL/6J mice. After confirming the onset of DKD, mice were given irbesartan, distilled water, or different concentrations of puerarin (40 and 80 mg/kg/d) by gavage for 8 weeks.
View Article and Find Full Text PDFKidney Med
February 2025
Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Pure red cell aplasia (PRCA) is a rare complication of erythropoietin (EPO) therapy, characterized by a severe deficiency in red blood cell production. There is no guideline on the treatment for PRCA because there have been too few cases to perform prospective cohort studies. The main treatments for PRCA include immediate cessation of EPO, restrictive transfusion, and immunosuppressive therapies.
View Article and Find Full Text PDFIndian J Endocrinol Metab
December 2024
Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
Type 2 diabetes (T2D) is a long-term metabolic condition that presents considerable health challenges globally. As the disease progresses, the interplay between genetic, environmental, and lifestyle factors becomes increasingly evident, leading to complications. Epigenetics has emerged as a critical area of research, providing insights into how these factors can modify the expression and cellular behavior without altering the underlying DNA sequence.
View Article and Find Full Text PDFMed Clin (Barc)
January 2025
China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China; Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China. Electronic address:
Objectives: Crescents play important roles in the pathophysiology of patients with biopsy-proven diabetic nephropathy (DN). However, their relationship to disease severity and progression has not been fully clarified.
Methods: We assessed 142 participants in a retrospective cohort study of biopsy-proven DN.
J Biol Chem
January 2025
Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033. Electronic address:
Increasing evidence supports the role of an augmented immune response in the early development and progression of renal complications caused by diabetes. We recently demonstrated that podocyte-specific expression of stress response protein regulated in development and DNA damage response 1 (REDD1) contributes to activation of the pro-inflammatory transcription factor NF-κB in the kidney of diabetic mice. The studies here were designed to define the specific signaling events whereby REDD1 promotes NF-κB activation in the context of diabetic nephropathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!