AI Article Synopsis

  • Lung cancer is highly prevalent and often deadly, with cisplatin being a common chemotherapy choice for non-small cell lung cancer (NSCLC); however, hypoxia leads to chemoresistance, complicating treatment outcomes.
  • Exposure to hypoxia increases levels of HIF-1α and p53 in A549 lung cancer cells, enhancing glycolysis and contributing to cisplatin resistance, but knockdown of HIF-1α helps sensitize these cells to the drug.
  • Additionally, hypoxia-activated p53 slows down the cell cycle and reduces proliferation, further decreasing the effectiveness of cisplatin on A549 cells, highlighting the protective roles of HIF-1α and p53 in this context.

Article Abstract

Lung cancer is one of the most frequently occurring and fatal cancer types worldwide. Cisplatin is widely used for chemotherapy of non-small cell lung cancer (NSCLC). However, the use of cisplatin has been met with the challenge of chemoresistance as a result of hypoxia, which is common in adult solid tumors and is a principal cause of a poor patient outcome. In the present study, the effects of hypoxia on the response of the NSCLC A549 cell line to the clinically relevant cytotoxic cisplatin were evaluated via regulating hypoxia inducible facor-1α (HIF-1α) and p53. Hypoxia exposure upregulated the expression levels of HIF-1α and p53, and promoted glycolysis in A549 cells, which was attenuated by HIF-1α knockdown by siRNA introduction, indicating the critical roles of HIF-1α in regulating glycolysis under hypoxic conditions. HIF-1α-knockdown also sensitized A549 cells to cisplatin in hypoxia-exposed, but not in normoxia-exposed A549 cells, suggesting that hypoxia-induced cisplatin resistance partially contributes toward the upregulation of HIF-1α by hypoxia exposure. The present study also determined that hypoxia-upregulated p53 activated its downstream target gene p21 transcriptionally and blocked the cell cycle at the G1-G0 phase, thereby leading to inhibition of cell proliferation. As a result, activated p53 desensitized A549 cells to cisplatin potentially through increasing the non-proliferation status of A549 cells and therefore minimizing the influence of cisplatin. Taken together, these results identified the exact effects of HIF-1α and p53 induced by hypoxia and potentially elucidated their protective effects on A549 cells against cisplatin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019907PMC
http://dx.doi.org/10.3892/ol.2018.8767DOI Listing

Publication Analysis

Top Keywords

a549 cells
28
hypoxia exposure
12
lung cancer
12
hif-1α p53
12
cells cisplatin
12
cisplatin
9
hypoxia
8
cisplatin resistance
8
resistance partially
8
p53 hypoxia
8

Similar Publications

Unlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.

View Article and Find Full Text PDF

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD) is associated with an increasing incidence and mortality rate while existing treatment strategies continue to exhibit considerable limitation. Studies have demonstrated that upregulation of KLF4 gene inhibits LUAD progression, but its underlying mechanisms remain elusive. The present research explored roles and mechanisms of KLF4 and the NF-κB pathway in LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!