BACKGROUND How to speed the recovery of viable myocardium in chronic total occlusion (CTO) patients after revascularization is still an unsolved problem. Breviscapine is widely used in cardiovascular diseases. However, there has been no study focused on the effect of breviscapine on viable myocardium recovery and left ventricular remodeling after CTO revascularization. MATERIAL AND METHODS We propose to recruit 78 consecutive coronary artery disease (CAD) patients with CTO during a period of 12 months. They will be randomly assigned to receive either breviscapine (40 mg) or placebo in the following 12 months. Blood tests, electrocardiogram, and Major Adverse Cardiac Events (MACE) will be collected at baseline and the follow-up visits at 1, 3, 6, 9, and 12 months. Low-dose dobutamine MRI will be applied for the assessment of viable myocardium, microcirculation perfusion, and left ventricular remodeling, and the concentrations of angiogenic cytokine, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) will be investigated at baseline and at 1- and 12-month follow-up. The recovery of viable myocardium after revascularization in CTO patients was the primary endpoint. Improvement of microcirculation perfusion, left ventricular remodeling, peripheral concentrations of VEGF and bFGF as well as MACE will be the secondary endpoints. RESULTS Breviscapine treatment obviously improve the recovery of viable myocardium, myocardial microcirculation perfusion, and left ventricular remodeling after revascularization in CTO patients, and reduce the occurrence of MACE. We also will determine if breviscapine increases the peripheral blood angiogenic cytokine concentrations of VEGF and bFGF. CONCLUSIONS This study will aim to demonstrate the effect of breviscapine on the recovery of viable myocardium and left ventricular remodeling in CTO patients after revascularization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064194 | PMC |
http://dx.doi.org/10.12659/MSM.906438 | DOI Listing |
Sci Adv
January 2025
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.
View Article and Find Full Text PDFProg Cardiovasc Dis
January 2025
Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. Electronic address:
Myocardial viability assessment is used to determine if chronically dysfunctional myocardium may benefit from coronary revascularization. Cardiac magnetic resonance with late gadolinium enhancement is the current gold standard for visualizing myocardial scar and provides valuable insight into myocardial viability. Viability assessments can also be made with Cardiac Positron Emission Tomography, Echocardiography, Single Photon Emission Tomography, and Cardiac Computed Tomography with each having advantages and disadvantages.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany.
: To validate the automated quantification of cardiac chamber volumes and myocardial mass on non-contrast chest CT using cardiac MR (CMR) as a reference. : We retrospectively included 53 consecutive patients who received non-contrast chest CT and CMR within three weeks. A deep learning model created cardiac segmentations on axial soft-tissue reconstructions from CT, covering all four cardiac chambers and the left ventricular myocardium.
View Article and Find Full Text PDFResusc Plus
January 2025
Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada.
Background: Epinephrine is currently the only recommended cardio-resuscitative medication for use in neonatal cardiopulmonary resuscitation (CPR), as per consensus of science and treatment recommendations. An alternative medication, vasopressin, may be beneficial, however there is limited data regarding its effect on cardiac and brain tissue following recovery from neonatal CPR.
Aim: To compare the effects of vasopressin and epinephrine during resuscitation of asphyxiated post-transitional piglets on cardiac and brain tissue injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!