In this work, the sensor response of MPcF (M = Cu, Co, Zn; = 0, 4, 16) films toward gaseous NH₃ (10⁻50 ppm) was studied by a chemiresistive method and compared to that of unsubstituted MPc films to reveal the effects of central metals and F-substituents on the sensing properties. A combination of atomic force microscopy and X-ray diffraction techniques have been used to elucidate the structural features of thin MPcF films deposited by organic molecular beam deposition. It has been shown that the sensor response of MPcF₄ films to ammonia is noticeably higher than that of MPc films, which is in good correlation with the values of binding energy between the metal phthalocyanine and NH₃ molecules, as calculated by the density functional theory (DFT) method. At the same time, in contrast to the DFT calculations, MPcF demonstrated the lesser sensor response compared with MPcF₄, which appeared to be connected with the different structure and morphology of their films. The ZnPcF₄ films were shown to exhibit a sensitivity to ammonia up to concentrations as low as 0.1 ppm, and can be used for the selective detection of ammonia in the presence of some reducing gases and volatile organic compounds. Moreover, the ZnPcF₄ films can be used for the detection of NH₃ in the gas mixture simulating exhaled air (N₂ 76%, O₂ 16%, H₂O 5%, and CO₂ 3%).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069251 | PMC |
http://dx.doi.org/10.3390/s18072141 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Laboratory of Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi 394650 Surat Gujarat India. Electronic address:
A single molecule sensor for several analytes is indeed desired by the scientists around the world due to obvious advantages. In this report we present a new class of Lophine incorporated azo dyes that has capacity of differential colorimetric detection of several metal ions. Interestingly the sensor was found to have pH dependent selective response towards several metals.
View Article and Find Full Text PDFMil Psychol
January 2025
NeuroStat Analytical Solutions, LLC, Great Falls, Virginia, USA.
Building on emerging literature, a new self-report inventory was developed to assess multiple psychological attributes relevant to adaptability in remote warriors. Literature search backed by surveys of military and psychological experts identified 32 attributes for self-report scale development. Items were sorted reliably into targeted dimensions (67.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.
View Article and Find Full Text PDFChem Asian J
January 2025
Birla Institute of Technology & Science Pilani - Hyderabad Campus, Chemistry, Jawaharnagar, Shamirpet Mandal, 500078, Hyderabad, INDIA.
Despite significant advancements in the structural flexibility and functional diversity of fluorescent molecular sensors, the chromophores often require complex synthetic processes and are typically designed to perform only a specific function. Herein, we have demonstrated the unique features of fluorophores based on a fused coumarin-indole scaffold, which are synthetically available via a one-step reaction. Four fluorophores (ICH, ICEst, ICOMe, and ICNMe2) with varying substituents were synthesized and characterized.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Communication and Information Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
The SnO@BiO core-shell heterojunction structure was designed and synthesized via a hydrothermal method, and the structure and morphology of the synthesized samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Based on the conclusions from XRD and SEM, it can be observed that as the hydrothermal temperature increases, the content of BiO coated on the surface of SnO spheres gradually increases, and the diameter of BiO nanoparticles also increases. At a hydrothermal temperature of 160 °C, the SnO spheres are fully coated with BiO nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!