Objective: We aim to investigate whether the breast cancer metastasis suppressor gene, breast cancer metastasis suppressor 1 (BRMS1), is correlated with clinicopathological features of breast cancer or not.

Materials And Methods: Following a stringent inclusion and exclusion criteria, case-control studies related to the association between BRMS1 and breast cancer were selected from articles retrieved by electronic database searches. All statistical analyses were performed by Stata version 12.0 (Stata Corp, College Station, TX, USA).

Results: A total of 12 studies were ultimately included in this meta-analysis. Results of our meta-analysis suggested that BRMS1 protein in breast cancer tissues was significantly lower compared with normal breast tissues (odds ratio [OR] =0.08, 95% confidence interval [CI] =0.04-0.15, P < 0.001). The BRMS1 protein in metastatic breast cancer tissue was lower than that in nonmetastatic breast cancer tissue (OR = 0.20, 95% CI = 0.13-0.29, P < 0.001), and BRMS1 protein in tumor-node-metastasis (TNM) stages 1, 2 was found to be higher than TNM stages 3, 4 (OR = 4.62, 95% CI = 2.77-7.70, P < 0.001). With respect to breast cancer types, BRMS1 protein in all the three major types of breast cancer was lower than the normal tissues. We also found strong correlations between BRMS1 mRNA levels and TNM stage and tumor size.

Conclusion: Our meta-analysis results showed that reduced BRMS1 expression level was significantly associated with clinicopathological features of breast cancer, suggesting that loss of expression or reduced levels of BRMS1 might be a strong indicator of the metastatic capacity of breast cancer, with poor prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0973-1482.172125DOI Listing

Publication Analysis

Top Keywords

breast cancer
56
cancer metastasis
16
metastasis suppressor
16
brms1 protein
16
breast
15
cancer
13
clinicopathological features
12
features breast
12
brms1
9
suppressor gene
8

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.

Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!