Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Giant cell arteritis (GCA)-a primary vasculitis of medium and large arteries-is associated with vessel wall damage, elastic membrane fragmentation, and vascular remodeling. Proteinases are believed to contribute to pathogenesis by degrading extracellular matrix and causing tissue injury.
Objective: The MMP (matrix metalloproteinase)-9-a type IV collagenase-is produced in the vasculitic lesions of GCA. It is unknown which pathogenic processes are MMP-9 dependent.
Methods And Results: The tissue transcriptome of GCA-affected temporal arteries contained high amounts of MMP-9 transcripts, and immunostaining for pro-MMP-9 localized the enzyme to wall-infiltrating macrophages. MMP-2 and MMP-9 transcripts were also abundant in monocytes and monocyte-derived macrophages from patients with GCA. Patient-derived monocytes outperformed healthy monocytes in passing through engineered basement membranes. GCA CD (cluster of differentiation) 4 T cells required MMP-9-producing monocytes to penetrate through matrix built from type IV collagen. In vivo functions of MMP-9 were tested in a human artery-SCID (severe combined immunodeficiency) chimera model by blocking enzyme activity with a highly specific monoclonal antibody or by injecting rMMP-9 (recombinant MMP-9). Inhibiting MMP-9 activity profoundly suppressed vascular injury, decreased the density of inflammatory infiltrates ( P<0.001), reduced intramural neoangiogenesis ( P<0.001), and prevented intimal layer hyperplasia ( P<0.001). rMMP-9 amplified all domains of vasculitic activity, promoted assembly of T-cell infiltrates ( P<0.05), intensified formation of new microvessels ( P<0.001), and worsened intimal thickening ( P<0.001). Systemic delivery of N-acetyl-proline-glycine-proline-a matrikine produced by MMP-9-mediated gelatinolysis-had limited vasculitogenic effects.
Conclusions: In large vessel vasculitis, MMP-9 controls the access of monocytes and T cells to the vascular wall. T cells depend on MMP-9-producing monocytes to pass through collagen IV-containing basement membrane. Invasion of vasculitogenic T cells and monocytes, formation of neoangiogenic networks, and neointimal growth all require the enzymatic activity of MMP-9, identifying this protease as a potential therapeutic target to restore the immunoprivilege of the arterial wall in large vessel vasculitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202245 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.118.313206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!