Background: Stroke is the fifth leading cause of death and the leading cause of long-term disability in the USA, costing $40.2 billion in direct and indirect costs. Globally, stroke is the second leading cause of death and has a higher prevalence in lower- and middle-income countries compared to high-income countries. The role of the spleen in stroke has been studied in rodent models of stroke and is seen as a major contributor to increased secondary neural injury after stroke. Splenectomy 2 weeks prior to ischemic and hemorrhagic stroke in mice and rats shows decreased infarct volumes. Additionally, the spleen decreases in size following stroke in rodents. Pro-inflammatory mediators are also increased in the spleen and subsequently the brain after stroke. These data in preclinical models of stroke have led stroke neurologists to look at the splenic response in stroke subjects. The outcomes of these studies suggest the spleen is responding in a similar manner in stroke subjects as it is in animal models of stroke.
Conclusion: Animal models demonstrating the detrimental role of the spleen in stroke are providing strong evidence of how the spleen is responding during stroke in human subjects. This indicates treatments targeting the splenic immune response in animals could provide useful targets and treatments for stroke subjects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030736 | PMC |
http://dx.doi.org/10.1186/s12974-018-1239-9 | DOI Listing |
Circ Genom Precis Med
January 2025
Mary and Steve Wen Cardiovascular Division, Department of Medicine, University of California, Los Angeles. (W.F., N.D.W.).
Background: Lp(a; Lipoprotein[a]) is a predictor of atherosclerotic cardiovascular disease (ASCVD); however, there are few algorithms incorporating Lp(a), especially from real-world settings. We developed an electronic health record (EHR)-based risk prediction algorithm including Lp(a).
Methods: Utilizing a large EHR database, we categorized Lp(a) cut points at 25, 50, and 75 mg/dL and constructed 10-year ASCVD risk prediction models incorporating Lp(a), with external validation in a pooled cohort of 4 US prospective studies.
Stroke
January 2025
Department of Neurology, University of New Mexico, MSC10 5620, Albuquerque.
Stroke
January 2025
Wolfson Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom. (D.M.K., P.M.R.).
Cardiovascular diseases such as stroke are a major cause of morbidity and mortality for patients with chronic kidney disease (CKD). The underlying mechanisms connecting CKD and cardiovascular disease are yet to be fully elucidated, but inflammation is proposed to play an important role based on genetic association studies, studies of inflammatory biomarkers, and clinical trials of anti-inflammatory drug targets. There are multiple sources of both endogenous and exogenous inflammation in CKD, including increased production and decreased clearance of proinflammatory cytokines, oxidative stress, metabolic acidosis, chronic and recurrent infections, dialysis access, changes in adipose tissue metabolism, and disruptions in intestinal microbiota.
View Article and Find Full Text PDFStroke
January 2025
Department of Neurology, University of Pennsylvania, PA. (L.I., S.E.Z., S.E.K., B.L.C.).
Background: A modified computed tomography angiography (CTA)-based Carotid Plaque Reporting and Data System (Plaque-RADS) classification was applied to a cohort of patients with embolic stroke of undetermined source to test whether high-risk Plaque-RADS subtypes are more prevalent on the ipsilateral side of stroke. With the widespread use of CTA for stroke evaluation, a CTA-based Plaque-RADS would be valuable for generalizability.
Methods: A retrospective observational cross-sectional study was conducted at a single integrated health system comprised of 3 hospitals with a comprehensive stroke center between October 1, 2015, and April 1, 2017.
Purpose: This study aimed to validate the accuracy of the Active Style Pro HJA-750C (ASP) in measuring metabolic equivalents (METs) during walking and reaching tasks in individuals with subacute stroke using a respiratory gas analyzer as a reference.
Methods: Twenty-three hospitalized patients with subacute stroke participated in this study. They performed sitting and standing reaching tasks, as well as walking while wearing a VO2 Master respiratory gas analyzer and ASP devices on both the paretic and non-paretic sides.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!