Members of the Binder of SPerm (BSP) superfamily have been identified in both human and mouse epididymis. These proteins are known to bind sperm membrane and promote sperm capacitation. Studies suggest that BSPH2 might play a different role in sperm functions from its counterparts; however, the role of BSPH2 remains mainly unexplored. To investigate whether the absence of one member of the BSP family could affect fertility, mice lacking Bsph2 expression were generated using clustered regularly interspaced short palindromic repeats (CRISPR) associated 9 (Cas9) technology. Knockout (KO) male mice were mated with wild-type (WT) females, and the number and weight of the pups were determined. Sperm motility in WT and KO was assessed using sperm class analyzer (SCA). Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for protein identification. Fertility analysis of null Bsph2 mice did not reveal any phenotype. No differences were noticed on average litter size or average pup weight. Normal testis weight and morphology were observed in Bsph2 and Bsph2 compared to the WT. Quantitative polymerase chain reaction analyses revealed that Bsph1 messenger RNA expression was increased in mutant mice, whereas LC-MS/MS analysis displayed no increase in protein expression level. Taken together, we show the existence of redundant function for murine BSPH2 and the lack of BSPH2 itself does not lead to sterility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.23039DOI Listing

Publication Analysis

Top Keywords

bsph2
9
sperm
6
crispr-cas9-mediated mutation
4
mutation revealed
4
revealed bsph2
4
bsph2 protein
4
protein dispensable
4
dispensable male
4
male fertility
4
fertility members
4

Similar Publications

In this experiment, the co-constructed O/W emulsions of different soy protein hydrolysates (SPHs) and gum arabic (GA) were investigated. SPHs were prepared by hydrolyzing soy protein isolate (SPI) using different enzymes, and investigated the effects of enzyme types and hydrolysis time on the physicochemical properties of SPHs. Moreover, SPI/GA and SPHs/GA were prepared and used as hydrophilic emulsifiers to construct O/W emulsions.

View Article and Find Full Text PDF

The binder of sperm family of proteins has been reported to be indispensable for sperm maturation and capacitation. However, their physiological functions in fertility have only been studied in vitro. CRISPR/Cas9 genome editing was utilized to generate double knockout (DKO) mice by simultaneously targeting the two murine binder of sperm genes, Bsph1 and Bsph2.

View Article and Find Full Text PDF

Members of the Binder of SPerm (BSP) superfamily have been identified in both human and mouse epididymis. These proteins are known to bind sperm membrane and promote sperm capacitation. Studies suggest that BSPH2 might play a different role in sperm functions from its counterparts; however, the role of BSPH2 remains mainly unexplored.

View Article and Find Full Text PDF

Seminal plasma (SP) proteins support the survival of spermatozoa acting not only at the plasma membrane but also by inhibition of capacitation, resulting in higher fertilizing ability. Among SP proteins, BSP (binder of sperm) proteins are the most studied, since they may be useful for the improvement of semen diluents, storage and subsequent fertilization results. However, an updated and detailed phylogenetic analysis of the BSP protein superfamily has not been carried out with all the sequences described in the main databases.

View Article and Find Full Text PDF

Interaction of milk proteins and Binder of Sperm (BSP) proteins from boar, stallion and ram semen.

Reprod Biol Endocrinol

August 2015

Department of Medicine, Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, Québec, Canada, H3C 3J7.

Background: Mammalian semen contains a family of closely related proteins known as Binder of SPerm (BSP proteins) that are added to sperm at ejaculation. BSP proteins extract lipids from the sperm membrane thereby extensively modifying its composition. These changes can ultimately be detrimental to sperm storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!