The bacterial selectivity of an amphiphilic library of small cyclic α/β-tetra-, α/β-penta-, and α/β-hexapeptides rich in arginine/tryptophan (Arg/Trp) residues, which contains asymmetric backbone configurations and differ in hydrophobicity and alternating d,l-amino acids, was investigated against Bacillus subtilis and Escherichia coli. The structural analyses showed that the peptides tend to form assemblies of different shapes. All-l-peptides, especially the most hydrophobic pentamers, were more strongly anti-B. subtilis. With the exception to cyclo(Phe-d-Trp-β hArg-Arg-d-Trp) (Phe=phenylalanine), the peptides had no effects on inner membrane of E. coli, but lyzed the lipopolysaccharide layer according to their activity pattern. The activities adversely changed with a decrease in the number of amide intramolecular hydrogen bonds in assemblies of diastereomeric peptides and the ratio of hydrophobic/hydrophilic solvent-accessible surface areas. The remarkable enhanced entropic contribution for the partitioning of the least conformationally constrained cyclo(Trp-d-Phe-β hTrp-Arg-d-Arg) sequence into the membranes supported the strong self-assembly behavior, therefore making the peptide less penetrable through the E. coli outer layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201802881 | DOI Listing |
Comput Biol Med
September 2021
Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Mashhad, Iran.
COVID-19, a newly discovered type of coronavirus, is the cause of the pandemic infection that was first reported in Wuhan, China, in December 2019. One of the most critical problems in this regard is to identify innovative drugs that may reduce or manage this global health concern. Nanoparticles have shown a pivotal role in drug delivery systems in recent decades.
View Article and Find Full Text PDFChemistry
September 2018
Leibniz institute of molecular pharmacology (FMP), Robert Roessle Street 10, 13125, Berlin, Germany.
The bacterial selectivity of an amphiphilic library of small cyclic α/β-tetra-, α/β-penta-, and α/β-hexapeptides rich in arginine/tryptophan (Arg/Trp) residues, which contains asymmetric backbone configurations and differ in hydrophobicity and alternating d,l-amino acids, was investigated against Bacillus subtilis and Escherichia coli. The structural analyses showed that the peptides tend to form assemblies of different shapes. All-l-peptides, especially the most hydrophobic pentamers, were more strongly anti-B.
View Article and Find Full Text PDFJ Phys Chem B
January 2009
Russian Academy of Sciences, Moscow, 117997, Russia.
In the first article of this series we demonstrated the importance of specific intrapeptide interactions and peptide-lipid contacts for the membrane binding of penetratin (pAntp). Here in focus was detailed characterization of spatial hydrophobic/hydrophilic properties of the bilayer surface and their influence on the binding mode of pAntp. From the hydrophobicity point of view, the solvent-accessible surfaces of lipid bilayers possess a distinctly "mosaic" character.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!