Background: Establishment of a beneficial microbiota profile for piglets as early in life as possible is important as it will impact their future health. In the current study, we hypothesized that resistant starch (RS) provided in the maternal diet during gestation and lactation will be fermented in their hindgut, which would favourably modify their milk and/or gut microbiota composition and that it would in turn affect piglets' microbiota profile and their absorptive and immune abilities.

Methods: In this experiment, 33% of pea starch was used in the diet of gestating and lactating sows and compared to control sows. Their faecal microbiota and milk composition were determined and the colonic microbiota, short-chain fatty acids (SCFA) production and gut health related parameters of the piglets were measured two days before weaning. In addition, their overall performances and post-weaning faecal score were also assessed.

Results: The RS diet modulated the faecal microbiota of the sows during gestation, increasing the Firmicutes:Bacteroidetes ratio and the relative abundance of beneficial genera like Bifidobacterium but these differences disappeared during lactation and maternal diets did not impact the colonic microbiota of their progeny. Milk protein concentration decreased with RS diet and lactose concentration increased within the first weeks of lactation while decreased the week before weaning with the RS diet. No effect of the dietary treatment, on piglets' bodyweight or diarrhoea frequency post-weaning was observed. Moreover, the intestinal morphology measured as villus height and crypt depths, and the inflammatory cytokines in the intestine of the piglets were not differentially expressed between maternal treatments. Only zonula occludens 1 (ZO-1) was more expressed in the ileum of piglets born from RS sows, suggesting a better closure of the mucosa tight junctions.

Conclusion: Changes in the microbiota transferred from mother to piglets due to the inclusion of RS in the maternal diet are rather limited even though milk composition was affected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029764PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199568PLOS

Publication Analysis

Top Keywords

faecal microbiota
12
milk composition
12
microbiota
9
resistant starch
8
gestation lactation
8
microbiota milk
8
microbiota profile
8
maternal diet
8
colonic microbiota
8
diet
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!