Circumferential Thick Enhancement at Vessel Wall MRI Has High Specificity for Intracranial Aneurysm Instability.

Radiology

From the Departments of Neuroradiology (M.E., A.G., W.B.H., G.B., J.B., C.R.R., D.T., J.F.M., C.O., O.N.) and Neurosurgery (F.N.), Université Paris Descartes Sorbonne Paris Cité, INSERM S894, DHU Neurovasc, Centre Hospitalier Sainte-Anne, Service Imagerie Morphologique et Fonctionnelle, 1 rue Cabanis, 75674 Paris Cedex 14, France; and Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wis (P.T.).

Published: October 2018

Purpose To identify wall enhancement patterns on vessel wall MRI that discriminate between stable and unstable unruptured intracranial aneurysm (UIA). Materials and Methods Patients were included from November 2012 through January 2016. Vessel wall MR images were acquired at 3 T in patients with stable (incidental and nonchanging over 6 months) or unstable (symptomatic or changing over 6 months) UIA. Each aneurysm was evaluated by using a four-grade classification of enhancement: 0, none; 1, focal; 2, thin circumferential; and 3, thick (>1 mm) circumferential. Inter- and intrareader agreement for the presence and the grade of enhancement were assessed by using κ statistics and 95% confidence interval (CI). The sensitivity, specificity, and negative and positive predictive values of each enhancement grade for differentiating stable from unstable aneurysms was compared. Results The study included 263 patients with 333 aneurysms. Inter- and intrareader agreement was excellent for both the presence of enhancement (κ values, 0.82 [95% CI: 0.67, 0.99] and 0.87 [95% CI: 0.7, 1.0], respectively) and enhancement grade (κ = 0.92 [95% CI: 0.87, 0.95]). In unruptured aneurysms (n = 307), grade 3 enhancement exhibited the highest specificity (84.4%; 233 of 276; 95% CI: 80.1%, 88.7%; P = .02) and negative predictive value (94.3%; 233 of 247) for differentiating between stable and unstable lesions. There was a significant association between grade 3 enhancement and aneurysm instability (P < .0001). Conclusion In patients with intracranial aneurysm, a thick (>1 mm) circumferential pattern of wall enhancement demonstrated the highest specificity for differentiating between stable and unstable aneurysms. © RSNA, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2018172879DOI Listing

Publication Analysis

Top Keywords

stable unstable
16
vessel wall
12
intracranial aneurysm
12
grade enhancement
12
differentiating stable
12
enhancement
10
circumferential thick
8
wall mri
8
aneurysm instability
8
wall enhancement
8

Similar Publications

Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1.

View Article and Find Full Text PDF

Background: During the course of the past two decades, head-mounted augmented reality surgical navigation (HMARSN) systems have been increasingly employed in a variety of surgical specialties as a result of both advancements in augmented reality-related technologies and surgeons' desires to overcome some drawbacks inherent to conventional surgical navigation systems. In the present time, most experimental HMARSN systems adopt overlain display (OD) that overlay virtual models and planned routes of surgical tools on corresponding physical tissues, organs, lesions, and so forth, in a surgical field so as to provide surgeons with an intuitive and direct view to gain better hand-eye coordination as well as avoid attention shift and loss of sight (LOS), among other benefits during procedures. Yet, its system accuracy, which is the most crucial performance indicator of any surgical navigation system, is difficult to ascertain because it is highly subjective and user-dependent.

View Article and Find Full Text PDF

Distinct molecular subtypes of muscle-invasive bladder cancer (MIBC) may show different platinum sensitivities. Currently available data were mostly generated at transcriptome level and have limited comparability to each other. We aimed to determine the platinum sensitivity of molecular subtypes by using the protein expression-based Lund Taxonomy.

View Article and Find Full Text PDF

Stretchable microwave absorbers (SMAs) are vital for flexible electronics. Traditional SMAs display unstable tensile properties resulting from inconsistencies between the constrained conductive layer and the flexible dielectric layer. This study introduces an organohydrogel-based stretchable microwave absorber (OSMA) that incorporates an organohydrogel within an island-bridge structure.

View Article and Find Full Text PDF

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

January 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!