3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one, a Novel Curcumin Analogue, Inhibits Cellular and Humoral Immune Responses in Male Balb/c Mice.

Curr Pharm Biotechnol

Tissue Engineering Centre, 12th Floor Clinical Block, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia.

Published: December 2018

Background: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has previously been shown to manifest potent immunosuppressive effects on the in vitro phagocytosis process of human neutrophils.

Objective: In the present study, BBP was investigated for it's in vivo innate and adaptive immune responses mediated by different humoral and cellular immune factors.

Methods: Male Balb/c mice were orally fed with BBP (5, 10 and 20 mg/kg) for a period of 14 days and immunized with sheep red blood cells (sRBC) on day 0 for the determination of adaptive responses. The effects of BBP on phagocytosis process of neutrophils isolated from blood of treated/untreated animals were determined. The ceruloplasmin and lysozyme serum levels and myeloperoxidase (MPO) plasma level were also monitored. The mechanism was further explored by assessing its effects on the proliferation of T and B lymphocytes, T-lymphocytes subsets CD4+ and CD8+ and on the secretion of Th1/Th2 cytokines as well as serum immunoglobulins (IgG, IgM) and delayed type hypersensitivity (DTH) reaction.

Results: BBP showed a significant dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity and reactive oxygen species (ROS) production. In comparison to the sensitized control group, a dose-dependent inhibition was observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines. Moreover, a statistically significant decrease was perceived in serum levels of ceruloplasmin, lysozyme and immunoglobulins and MPO plasma level of BBP-treated mice. BBP also dose-dependently inhibited sheep red blood cells (sRBC)-induced swelling rate of mice paw in DTH.

Conclusion: These findings suggest the potential of BBP as a potent immunosuppressive agent.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389201019666180703092723DOI Listing

Publication Analysis

Top Keywords

curcumin analogue
8
immune responses
8
male balb/c
8
balb/c mice
8
potent immunosuppressive
8
phagocytosis process
8
sheep red
8
red blood
8
blood cells
8
ceruloplasmin lysozyme
8

Similar Publications

Background: Regenerating periodontal ligament (PDL) tissue is a vital challenge in dentistry that aims to restore periodontal function and aesthetics. This study explores a tissue engineering strategy that combines polycaprolactone (PCL)/collagen/cellulose acetate electrospun scaffolds with collagen hydrogels to deliver curcumin-loaded ZIF-8 nanoparticles fand periodontal ligament stem cells (PDLSCs).

Methods: Scaffolds were fabricated via electrospinningand collagen hydrogels incorporated PDLSCs and curcumin-loaded ZIF-8 nanoparticles (CURZIF-8) were developed using cross-linking.

View Article and Find Full Text PDF

Although curcumin is a well-known natural polyphenol with many biological activities, its clinical application has been limited by low aqueous solubility and stability. Therefore, curcumin derivatives have been proposed to overcome these limitations and increase anticancer activity. This study tested curcumin derivatives with modified feruloyl moieties ( and ) and the β-diketo moiety () to better understand their anticancer mechanism against human bladder cancer cells.

View Article and Find Full Text PDF

Nowadays, several processes to enrich desired bioactive compounds in plant extracts have been developed. The objective of the present study was to assess the performance of bovine serum albumin in increasing the extractive yields of anthraquinones and diarylheptanoids from their respective raw plant powder extracts. Aloe emodin, rhein, emodin, and chrysophanol, from , , , and , and curcumin from were analyzed in parent dry extracts, solubilized either with water, ethanol, or hydro-alcoholic mixtures, and in ones treated with aqueous solutions of bovine serum albumin by HPLC with UV/Vis detection.

View Article and Find Full Text PDF

Effect of polymer architecture on the properties and in vitro cytotoxicity of drug formulation: A case study with mono- and di-gradient amphiphilic poly(2-Oxazoline)s.

Eur J Pharm Biopharm

January 2025

Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5 041 54 Kosice, Slovakia; SAFTRA Photonics sro., Moldavska cesta 51 04011 Kosice, Slovakia.

Due to the straightforward single-step synthesis, amphiphilic gradient copoly(2-oxazoline)s are becoming more popular alternative to their block analogue for the development of next-generation drug delivery systems. Here, we investigated the influence of polymer architecture on the physiochemical and biological assessment of nanoformulations formed by the self-assembly of gradient copoly(2-oxazoline)s. Two different architectures were synthesized: hydrophilic-grad-hydrophobic (mono-gradient) and hydrophobic-grad-hydrophilic-grad-hydrophobic (di-gradient) which contained a hydrophilic monomer, 2-ethyl-2-oxazoline (EtOx) and a hydrophobic monomer, 2-phenyl-2-oxazoline (PhOx).

View Article and Find Full Text PDF

Ectopic calcifications occur in tendons, ligaments, entheses, muscles, and fasciae, and are often associated with pain and inflammation. In clinical settings, these calcifications are commonly treated by physical therapy and/or surgical interventions. However, there is not enough understanding of pharmacological treatments as primary cures, supportive therapy to physical or surgical treatment, or even preventive measures to avoid or diminish the development of ectopic calcifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!