Comparative Life Cycle Assessment of Advanced Wastewater Treatment Processes for Removal of Chemicals of Emerging Concern.

Environ Sci Technol

Department of Civil and Environmental Engineering , Northeastern University , 400 Snell Engineering Center, 360 Huntington Ave , Boston , Massachusetts 02115 , United States.

Published: October 2018

The potential health effects associated with contaminants of emerging concern (CECs) have motivated regulatory initiatives and deployment of energy- and chemical-intensive advanced treatment processes for their removal. This study evaluates life cycle environmental and health impacts associated with advanced CEC removal processes, encompassing both the benefits of improved effluent quality as well as emissions from upstream activities. A total of 64 treatment configurations were designed and modeled for treating typical U.S. medium-strength wastewater, covering three policy-relevant representative levels of carbon and nutrient removal, with and without additional tertiary CEC removal. The USEtox model was used to calculate characterization factors of several CECs with missing values. Stochastic uncertainty analysis considered variability in influent water quality and uncertainty in CEC toxicity and associated characterization factors. Results show that advanced tertiary treatment can simultaneously reduce nutrients and CECs in effluents to specified limits, but these direct water quality benefits were outweighed by even greater increases in indirect impacts for the toxicity-related metrics, even when considering order-of-magnitude uncertainties for CEC characterization factors. Future work should consider water quality aspects not currently captured in life cycle impact assessment, such as endocrine disruption, in order to evaluate the full policy implications of the CEC removal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b00036DOI Listing

Publication Analysis

Top Keywords

life cycle
12
cec removal
12
characterization factors
12
water quality
12
treatment processes
8
processes removal
8
emerging concern
8
removal
6
cec
5
comparative life
4

Similar Publications

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.

View Article and Find Full Text PDF

Beyond protein folding: The pleiotropic functions of PPIases in cellular processes and microbial virulence.

Biochim Biophys Acta Gen Subj

December 2024

Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India. Electronic address:

Peptidyl prolyl cis/trans isomerases (PPIases), a ubiquitously distributed superfamily of enzymes, associated with signal transduction, trafficking, assembly, biofilm formation, stress tolerance, cell cycle regulation, gene expression and tissue regeneration, is a key regulator of metabolic disorders and microbial virulence. This review assumes an integrative approach, to provide a holistic overview of the structural and functional diversity of PPIases, examining their conformational dynamics, cellular distribution, and physiological significance. We explore their intricate involvement in cellular processes and virulence modulation in both eukaryotic and prokaryotic systems.

View Article and Find Full Text PDF

The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!