Ligand exchange is an advanced technique for tuning the various properties of nanocrystal (NC) thin films, widely used in the NC thin-film device applications. Understanding how the NC thin films transform into functional thin-film devices upon ligand exchange is essential. Here, we investigated the process of structural transformation and accompanying property changes in the NC thin films, by monitoring the various characteristics of silver (Ag) NC thin films at each stage of the ligand-exchange process. A transition state was identified in which the ligands are partially exchanged, where the NC thin films showed unexpected electromechanical features with high gauge factors up to 300. A model system was established to explain the origin of the high gauge factors, supported by the observation of spontaneously formed nanocracks and metal-insulator transition from the structural analysis and charge transport study, respectively. Taking advantages of the unique electromechanical properties of the NC thin films, we fabricated flexible strain gauge sensor devices with high sensitivity, reliability, and stability. We introduce a one-step fabrication process, namely, "the time- and spatial-selective ligand-exchange process", for the design of low-cost and high-performance wearable sensors that effectively detect human motion, such as finger or neck muscle movement. This study provides a fundamental understanding of the ligand-exchange process in NCs, as well as an insight into the functionalities of the NC thin films for technological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b06754DOI Listing

Publication Analysis

Top Keywords

thin films
32
thin
8
nanocrystal thin
8
films
8
wearable sensors
8
ligand exchange
8
ligand-exchange process
8
high gauge
8
gauge factors
8
transition states
4

Similar Publications

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.

View Article and Find Full Text PDF

Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.

View Article and Find Full Text PDF

Films Based on Chitosan/Konjac Glucomannan Blend Containing Resveratrol for Potential Skin Application.

Materials (Basel)

January 2025

Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland.

Biopolymers represent a significant class of materials with potential applications in skin care due to their beneficial properties. Resveratrol is a natural substance that exhibits a range of biological activities, including the scavenging of free radicals and anti-inflammatory and anti-aging effects. In this study, chitosan/konjac glucomannan resveratrol-enriched thin films were prepared.

View Article and Find Full Text PDF

The global asphalt production growth rate exceeded 10% in the past decade, and over 90% of the world's road surfaces are generated from asphalt materials. Therefore, the issue of asphalt aging has been widely researched. In this study, the aging of asphalt thin films under various natural conditions was studied to prevent the distortion of indoor simulated aging and to prevent the extraction of asphalt samples from road surfaces from impacting the aged asphalt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!