A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries. | LitMetric

Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries.

ChemSusChem

Electrochemical Energy storage group, CIC Energigune, Parque Tecnológico de Álava, 48, 01510, Miñano, Álava, Spain.

Published: September 2018

The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid-electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost-effective sodium salt (Na C O ) is reported that could be applied as additive in cathodes to solve the irreversible-capacity issues of anodes in sodium-ion batteries. When added to Na (VO) (PO ) F cathode, the cathode delivered a highly stable capacity of 135 mAh g and stable cycling performance. The water-stable Na (VO) (PO ) F cathode in combination with a water-soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full-cell configuration) has been observed when using the new sodium salt at a C-rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non-aqueous cathode-fabrication techniques for sodium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201801099DOI Listing

Publication Analysis

Top Keywords

sodium-ion batteries
16
sodium salt
8
electrode fabrication
8
highly efficient
4
efficient cost
4
cost effective
4
effective safe
4
safe sodiation
4
sodiation agent
4
agent high-performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!