In natural ecological systems, plants are often simultaneously attacked by both insects and pathogens, which can affect each other's performance and the interactions can be extended to higher trophic levels, such as parasitoids. The English grain aphid () and powdery mildew ( f. sp. ) are two common antagonists that pose a serious threat to wheat production. Numerous studies have investigated the effect of a single factor (insect or pathogen) on wheat production. However, investigation on the interactions among insect pests, pathogens, and parasitoids within the wheat crop system are rare. Furthermore, the influence of the fungicide, propiconazole, has been found to imitate the natural ecosystem. Therefore, this study investigated the effects of on the biological performance of grain aphids and the orientation behavior of its endoparasitic wasp in the wheat system. Our findings indicated that infection suppressed the feeding behavior, adult and nymph weight, and fecundity and prolonged the developmental time of . We found that wheat host plants had decreased proportions of essential amino acids and higher content of sucrose following aggravated infection. The contents of Pro and Gln increased in the wheat plant tissues after infection. In addition, infection elicited immune responses in wheat: increase in the expression of defense genes, content of total phenolic compounds, and activity of three related antioxidant enzymes. Moreover, co-infection of increased the attraction to compare to that after infestation with aphids alone. In conclusion, our results indicated that infection adversely affected the performance of in wheat through restricted nutrition and induced defense response. Furthermore, the preference of parasitoids in such an interactive environment might provide an important basis for pest management control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015903 | PMC |
http://dx.doi.org/10.3389/fpls.2018.00778 | DOI Listing |
Sci Rep
December 2024
Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.
Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.
View Article and Find Full Text PDFFood Chem
December 2024
Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China. Electronic address:
The aim of this study was to prepare, isolate, and identify hypocholesterolemic peptides from wheat germ protein and explore their efficacy. Wheat germ protein was hydrolyzed using four commercial enzymes. Hydrolysate, with the highest in vitro hypocholesterolemic activity was isolated using ultrafiltration and macroporous resin.
View Article and Find Full Text PDFJ Food Sci
December 2024
Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Microstructural properties of wheat-based food materials change during baking. These alterations affect the final product's mechanical properties, physical attributes, and consumer satisfaction. Image processing and pore network modeling were used to analyze the variations in a cookie's microstructural properties during baking.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, 70904-970 Brasília, DF, Brazil.
In this work, several imidazo[1,2-]pyridines were synthesized through the Groebke-Blackburn-Bienaymé three-component reaction (GBB-3CR), and their phytotoxicity was evaluated by the influence on the growth of wheat coleoptiles and three important agricultural seeds (, , and ) at test concentrations of 1000, 300, 100, 30, and 10 μM. A structure-activity relationship was established, showing the importance of halogen groups at the position of the attached aromatic ring and the presence of a cyclohexylamine group for greater activity. Post-modification of some GBB-3CR adducts was carried out, leading to imidazo[1,2-]pyridine-tetrazole hybrids, which were also evaluated in these bioassays.
View Article and Find Full Text PDFNew Phytol
December 2024
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
Protoderm formation is a crucial step in early embryo patterning in plants, separating the precursors of the epidermis and the inner tissues. Although key regulators such as ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) have been identified in the model plant Arabidopsis thaliana, the genetic pathways controlling protoderm specification remain largely unexplored. Here, we combined genetic, cytological, and molecular approaches to investigate the regulatory mechanisms of protoderm specification in Arabidopsis thaliana.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!