Glioblastoma (GBM) is the most aggressive brain malignancy in adults, where survival is approximately 14.6 months. Novel therapies are urgently needed and immunotherapy has hailed a new dawn for treatment of solid tumors. Natural killer (NK) cells may be amenable therapeutic effectors against heterogeneous GBM, since they also do not require co-stimulation and antigen specificity. However, it is unclear how culture media routinely used in pre-clinical studies affect GBM cell responses to NK-mediated cytotoxicity. We hypothesized that the culture medium would affect GBM cell phenotype, proliferation, and responses to NK cytotoxicity. We investigated in paired analyses = 6 patient-derived primary GBM cells propagated in stem cell or serum-containing medium for morphology, proliferation, as well as susceptibility to NK cytolysis and related this to expression of surface and intracellular lineage markers, as well as ligands for NK cell activating and inhibitory receptors. We genotyped the GBM cells for human leukocyte antigen (HLA) as well as the killer immunoglobulin-like receptors (KIR) of the = 6 allogeneic NK cells used as effector cells. Culture in serum-containing medium induced a switch in GBM cell morphology from suspension neuropsheres to adherent epithelial-mesenchymal-like phenotypes, which was partially reversible. The differentiated cells diminished expression of nestin, CD133 (prominin-1), and A2B5 putative glioma stem-cell markers, attenuated growth, diminished expression of ligands for activating NK cell receptors, while upregulating class I HLA ligands for NK cell inhibitory receptors. When maintained in serum-containing medium, fewer GBM cells expressed intercellular cell adhesion molecule-1 (ICAM-1) and were less susceptible to lysis by NK cells expressing αβ integrin receptor (LFA-1), mediated through combination of inhibitory KIR-HLA ligand mismatch and diminished activation receptor-ligand interactions compared to cells maintained in stem cell media. We conclude that development of preclinical immunotherapy strategies against GBM should not use cells propagated in serum-containing media to avoid misinterpretation of potential therapeutic responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015895 | PMC |
http://dx.doi.org/10.3389/fimmu.2018.01345 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.
View Article and Find Full Text PDFSci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Pharmacology, Medical Faculty, Atatürk University, Erzurum, Turkey.
Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!