Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many paediatric clinical research studies, whether observational or interventional, have as an eventual aim the identification or quantification of causal relationships. One might ask: does screen time influence childhood obesity? Could overuse of paracetamol in infancy cause wheeze? How does breastfeeding affect later cognitive outcomes? In this review, we present causal directed acyclic graphs (DAGs) to a paediatric audience. DAGs are a graphical tool which provide a way to visually represent and better understand the key concepts of exposure, outcome, causation, confounding, and bias. We use clinical examples, including those outlined above, framed in the language of DAGs, to demonstrate their potential applications. We show how DAGs can be most useful in identifying confounding and sources of bias, demonstrating inappropriate statistical adjustments for presumed biases, and understanding threats to validity in randomised controlled trials. We believe that a familiarity with DAGs, and the concepts underlying them, will be of benefit both to the researchers planning studies, and practising clinicians interpreting them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215481 | PMC |
http://dx.doi.org/10.1038/s41390-018-0071-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!