While synonymous mutations were long thought to be without phenotypic consequences, there is growing evidence they can affect gene expression, protein folding, and ultimately the fitness of an organism. In only a few cases have the mechanisms by which synonymous mutations affect the phenotype been elucidated. We previously identified 48 mutations in TEM-1 β-lactamase that increased resistance of Escherichia coli to cefotaxime, 10 of which were synonymous. To better understand the molecular mechanisms underlying the beneficial effect of these synonymous mutations, we made a series of measurements for a panel containing the 10 synonymous together with 10 non-synonymous mutations as a reference. Whereas messenger levels were unaffected, we found that total and functional TEM protein levels were higher for 5 out of 10 synonymous mutations. These observations suggest that some of these mutations act on translation or a downstream process. Similar effects were observed for some small-benefit non-synonymous mutations, suggesting a similar causal mechanism. For the synonymous mutations, we found that the cost of resistance scales with TEM protein levels. A resistance landscape for four synonymous mutations revealed strong epistasis: none of the combinations of mutations exceeded the resistance of the largest-effect mutation and there were synthetically neutral combinations. By considering combined effects of these mutations, we could infer that functional TEM protein level is a multi-dimensional phenotype. These results suggest that synonymous mutations may have beneficial effects by increasing the expression of an enzyme with low substrate activity, which may be realized via multiple, yet unknown, post-transcriptional mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180035PMC
http://dx.doi.org/10.1038/s41437-018-0104-zDOI Listing

Publication Analysis

Top Keywords

synonymous mutations
32
mutations
14
tem protein
12
synonymous
10
mutations tem-1
8
tem-1 β-lactamase
8
non-synonymous mutations
8
functional tem
8
protein levels
8
unraveling adaptive
4

Similar Publications

SARS-CoV-2 CoCoPUTs: analyzing GISAID and NCBI data to obtain codon statistics, mutations, and free energy over a multiyear period.

Virus Evol

January 2025

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.

A consistent area of interest since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the sequence composition of the virus and how it has changed over time. Many resources have been developed for the storage and analysis of SARS-CoV-2 data, such as GISAID (Global Initiative on Sharing All Influenza Data), NCBI, Nextstrain, and outbreak.info.

View Article and Find Full Text PDF

Genetic diversity of murine norovirus associated with ethanol sensitivity.

Appl Microbiol Biotechnol

January 2025

Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.

RNA viruses have high genetic diversity, allowing rapid adaptation to environmental pressures, such as disinfection. This diversity increases the likelihood of mutations influencing the viral sensitivity to disinfectants. Ethanol is widely used to control viral transmission; however, insufficient disinfection facilitates the survival of less-sensitive viruses.

View Article and Find Full Text PDF

Background: Type I interferonopathies including Aicardi-Goutiéres Syndrome (AGS) represent a heterogeneous group of clinical phenotypes. Herein, we present a Case with combined AGS and Cornelia de Lange Syndrome (CdLS)-a cohesinopathy-with comprehensive analysis of the immune and genomic abnormalities.

Case And Methods: A 20-year old man presented with chilblain lesions and resorption of distal phalanges of fingers and toes, somatic and psychomotor retardation, microcephaly, synophrys, hearing losing and other aberrancies consistent with the phenotype of CdLS.

View Article and Find Full Text PDF

Growth inhibition by ppc deletion is rescued by isocitrate dehydrogenase mutations in Escherichia coli.

FEMS Microbiol Lett

January 2025

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.

Phosphoenolpyruvate carboxylase encoded by ppc catalyzes the anaplerotic reaction of oxaloacetate in the TCA cycle in Escherichia coli. Deletion of ppc does not prevent the cells from replenishing oxaloacetate via the glyoxylate shunt, but the ppc-deletion strain almost did not grow on glucose. In the present study, we obtained evolved strains by deleting both ppc and mutS to increase the mutation rate and investigated the mechanisms for improving growth by analyzing the mutated genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!