Targeted therapies have revolutionized cancer treatment; however, progress lags behind in alveolar (ARMS) and embryonal rhabdomyosarcoma (ERMS), a soft-tissue sarcoma mainly occurring at pediatric and young adult age. Insulin-like growth factor 1 receptor (IGF1R)-directed targeted therapy is one of the few single-agent treatments with clinical activity in these diseases. However, clinical effects only occur in a small subset of patients and are often of short duration due to treatment resistance. Rational selection of combination treatments of either multiple targeted therapies or targeted therapies with chemotherapy could hypothetically circumvent treatment resistance mechanisms and enhance clinical efficacy. Simultaneous targeting of distinct mechanisms might be of particular interest in this regard, as this affects multiple hallmarks of cancer at once. To determine the most promising and clinically relevant targeted therapy-based combination treatments for ARMS and ERMS, we provide an extensive overview of preclinical and (early) clinical data concerning a variety of targeted therapy-based combination treatments. We concentrated on the most common classes of targeted therapies investigated in rhabdomyosarcoma to date, including those directed against receptor tyrosine kinases and associated downstream signaling pathways, the Hedgehog signaling pathway, apoptosis pathway, DNA damage response, cell-cycle regulators, oncogenic fusion proteins, and epigenetic modifiers. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-17-1131 | DOI Listing |
Alzheimers Dement
December 2024
University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).
Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) composed of tau aggregates. Research in animal models has generated hypotheses on the underlying mechanisms of the interaction between Aβ and tau pathology. In support of this interaction, results from clinical trials have shown that treatment with anti-Aβ monoclonal antibodies (mAbs) affects tau pathology.
View Article and Find Full Text PDFBackground: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Pharmacy, Chapman University, Irvine, CA, USA.
Background: Although novel treatments for Alzheimer's disease (AD) have begun to show modest therapeutic effects, agents that target hallmark AD pathology and offer neuroprotection are desired. Erythropoietin (EPO) is a glycoprotein hormone with neuroprotective effects but is faced with challenges including limited brain uptake and increased hematopoietic side effects with long-term dosing. Therefore, EPO has been modified and bound to a chimeric transferrin receptor monoclonal antibody (cTfRMAb); the latter shuttles EPO past the blood-brain barrier (BBB) into brain parenchyma and reduces its plasma exposure and potential for side effects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.
Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!