In the current work, new 1,3,4-oxadiazole derivatives were synthesized and investigated for their cytotoxic effects on A549 human lung adenocarcinoma, C6 rat glioma and NIH/3T3 mouse embryonic fibroblast cell lines. Compounds 2, 6 and 9 were found to be the most potent anticancer agents against A549 and C6 cell lines and therefore their effects on apoptosis, caspase-3 activation, Akt, FAK, mitochondrial membrane potential and ultrastructural morphological changes were evaluated. N-(5-Nitrothiazol-2-yl)-2-[[5-[((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl]-1,3,4-oxadiazol-2-yl]thio]acetamide (9) increased early and late apoptotic cell population in A549 and C6 cells more than cisplatin and caused more mitochondrial membrane depolarization in both cell lines than cisplatin. On the other hand, N-(6-methoxybenzothiazol-2-yl)-2-[[5-[((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl]-1,3,4-oxadiazol-2-yl]thio]acetamide (6) caused higher caspase-3 activation than cisplatin in both cell lines. Compound 6 showed significant Akt inhibitory activity in both cell lines. Moreover, compound 6 significantly inhibited FAK (Phospho-Tyr397) activity in C6 cell line. Molecular docking simulations demonstrated that compound 6 fitted into the active sites of Akt and FAK with high affinity and substrate-specific interactions. Furthermore, compounds 2, 6 and 9 caused apoptotic morphological changes in both cell lines obtained from micrographs by transmission electron microscopy. A computational study for the prediction of ADME properties of all compounds was also performed. These compounds did not violate Lipinski's rule, making them potential orally bioavailable anticancer agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2018.06.049 | DOI Listing |
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!