Given that cadmium (Cd) uptake by plants is linked to transpiration rate and activity of antioxidant enzymes and further that silicon (Si) can regulate them, it was hypothesized that improved Si nutrition could reduce Cd concentration in plants. Thus, present study was carried out to elucidate the positive effect of Si nutrition on the growth, activities of antioxidant enzymes and tissue cadmium (Cd) concentration in Cd-tolerant (Iqbal-2000) and Cd-sensitive wheat (Triticum aestivum L.) cultivars. Fifteen days after seedling transplantation, 15 μM Cd stress alone and in combination with 0.6 mM Si was applied. Silicon application improved root and shoot dry matter of Cd-sensitive cultivar Sehar-2006 while the effect was non-significant in Cd-tolerant cultivar Iqbal-2000. Silicon-treated Cd-sensitive cultivar showed marked improvements in chlorophyll content and photosynthesis, while stomatal conductance and transpiration rate decreased by Si application. Silicon treatment enhanced the activities of enzymatic antioxidants including catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase and the increase was higher for Cd-tolerant cultivar Iqbal-2000. Although Si nutrition depressed malondialdehyde (MDA) content in both Cd-stressed cultivars, the response was more evident in Cd-sensitive Sehar-2006. Lower lipid peroxidation was related to Si-induced increase in antioxidant activities only in Cd-sensitive cultivar. Silicon application decreased Cd accumulation in the roots and shoots of both the cultivars. The decrease in shoot Cd was associated with a decrease in Cd uptake by roots and Cd translocation from roots to shoots. Overall, it is concluded that Si suppressed Cd contents by decreasing transpiration rate in Cd-sensitive cultivar and by increasing antioxidant activity in Cd-tolerant cultivar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.06.069 | DOI Listing |
Sci Rep
December 2024
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
Lycium barbarum is an important economic crop in the arid region of Northwest China, and the regulation of irrigation and fertilisation is an important way to improve the quality and yield of Lycium barbarum. To explore the effects of water-fertiliser coupling on photosynthesis, quality and yield of Lycium barbarum under irrigation methods based on predicted crop evapotranspiration (ET), ET was calculated via reference evapotranspiration (ET) predicted on the basis of public weather forecasts, and the irrigation water volume was determined as a proportion of this ET. A field experiment was conducted via a completely randomised experimental design with five irrigation water volumes (W0 (100% ET), W1 (90% ET), W2 (80% ET), W3 (70% ET) and W4 (65% ET)) and three fertiliser application rates (high fertiliser (FH), medium fertiliser (FM) and low fertiliser (FL)).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Agronomy, Faculty of Agricultural Sciences, SGT University, Gurugram, India.
Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
To select the mycorrhizal seedlings of with excellent Cd-resistance and explore the mechanism of promoting the resistance to Cd stress of , nine species of isolated from different hosts infected to form mycorrhizal seedlings, were cultured in Cd-contaminated soil for three months. We conducted the principal component analysis (PCA) on biomass, root structure, and photosynthesis, and evaluated the Cd tolerance of mycorrhizal seedlings by membership function. The results showed that dry and fresh weight of mycorrhizal seedlings under Cd stress were 1.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
Hunan Academy of Forestry, Changsha 410004, China.
To clarify the response mechanism of exogenous paclobutrazol on drought resistance in seedlings, we investigated the effects of spraying different concentrations of paclobutrazol (25, 50, 100 mg·L) on the photosynthetic and antioxidant systems of 2-year-old seedlings under drought stress using natural drought method. The results showed that drought stress significantly reduced the photosynthesis and broke the dynamic balance of antioxidant system in seedlings. Spraying with different concentrations of paclobutrazol effectively alleviated the negative impacts of drought stress, and enhanced the defense capability of photosynthetic and antioxidant systems, with the 100 mg·L paclobutrazol treatment being the most effective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!