Obesity, triggered by high-fat diet (HFD), is associated to altered gustatory perception of dietary lipids. Oleanolic acid (OLA), a triterpene, has been reported to exert anti-obesity effects in animal models. Hence, we investigated the role of OLA in the modulation of oro-sensory perception of lipids in control and HFD-induced obese mice. As expected, OLA-treated obese mice exhibited a decrease in body, liver, and visceral adipose tissue weights. OLA treatment improved glucose tolerance, insulin level, plasma lipopolysaccharide (LPS), and hepatic cholesterol and triglyceride concentrations. OLA-treated obese mice exhibited higher fat preference compared to untreated obese mice, probably due to the increase in mRNA encoding CD36, a fat taste receptor, in mouse taste bud cells (mTBC). This phenomenon was associated with fatty-acid induced increases in free intracellular calcium concentrations, [Ca]i, induced in mTBC from OLA-treated obese mice. OLA also influenced the expression of mRNA encoding pro-inflammatory cytokines (IL-1β and IL-6) and some lipogenic genes (PPARα, SREBP1, FAS, ChREBP, and G6Pase) in liver and adipose tissue. These findings reveal that OLA improves gustatory perception of lipids and exerts protective effects in obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2018.06.025DOI Listing

Publication Analysis

Top Keywords

obese mice
20
ola-treated obese
12
oleanolic acid
8
fat preference
8
gustatory perception
8
perception lipids
8
mice exhibited
8
adipose tissue
8
mrna encoding
8
mice
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!