Background: The role of the extracellular matrix (ECM) structure and remodeling thereof in lung diseases is gaining importance. Pathology-related changes in ECM turnover may result in deleterious changes in lung architecture, leading to disease in the small airways. Here, degradation fragments of type I (C1M), type IV (α1 chain, C4M2), and type IV (α3 chain, C4Ma3) collagen, all degraded by metalloproteinases and the pro-form of collagen type V (PRO-C5) were investigated and associated with COPD severity and outcome.
Methods: In a prospective, observational, multicenter study including 498 patients with COPD Gold Initiative for Chronic Obstructive Lung Disease stage 2 to 4, ECM markers were assessed in serum at stable state, exacerbation, and at follow-up 4 weeks after exacerbation.
Results: At stable state, there was a significant inverse association between FEV % predicted and C1M, C4Ma3, and Pro-C5. C1M, C4M2, C4Ma3, and Pro-C5 were associated with BMI, airflow obstruction, dyspnea, and exercise capacity (BODE) index and the modified Medical Research Council (MMRC) score. C1M, C4M2, C4Ma3, and Pro-C5 were significantly increased from stable state to exacerbation and decreased at follow-up. Furthermore, the biomarkers were significantly higher during severe exacerbation compared with moderate exacerbation. Multivariate analysis adjusted for BMI, MMRC score, unadjusted Charlson score, and FEV %predicted showed a significant influence of C1M, C4Ma3, and C4M2 on time to exacerbation. None of the biomarkers were predictors for mortality.
Conclusions: Serologically assessed collagen remodeling appears to play a significant role in COPD severity (airflow limitation, dyspnea) and disease outcome (time to exacerbation and prognosis as assessed by the BODE index).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chest.2018.06.028 | DOI Listing |
J Phys Chem Lett
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.
View Article and Find Full Text PDFPurpose: To provide updated guidance regarding neoadjuvant chemotherapy (NACT) and primary cytoreductive surgery (PCS) among patients with stage III-IV epithelial ovarian, fallopian tube, or primary peritoneal cancer (epithelial ovarian cancer [EOC]).
Methods: A multidisciplinary Expert Panel convened and updated the systematic review.
Results: Sixty-one studies form the evidence base.
Inorg Chem
January 2025
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing AuTe) claimed various chemical compositions for this low-symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal, and electronic characteristics unknown. Here, we investigate the stability, electronic properties, and synthesis of the gold antimony tellurides AuSbTe and AuSbTe (montbrayite).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFJ Mol Model
January 2025
Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.
Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!