Unlabelled: Purpose/Aim of the study: the retinal relaxing factor (RRF) is an unidentified paracrine factor, which is continuously released from retinal tissue and causes smooth muscle cell relaxation. This study tried to identify the cellular source of the RRF. Furthermore, the possible RRF release by voltage-dependent sodium channel activation and the calcium-dependency of the RRF release were investigated.

Materials And Methods: mouse femoral arteries were mounted in myograph baths for in vitro isometric tension measurements. The vasorelaxing effect of chicken retinas, which contain no vascular cells, and of solutions incubated with MIO-M1 or primary Müller cell cultures were evaluated. The RRF release of other retinal cells was investigated by using cell type inhibitors. Concentration-response curves of veratridine, a voltage-dependent sodium channel activator, were constructed in the presence or absence of mouse retinal tissue to evaluate the RRF release. The calcium-dependency of the RRF release was investigated by evaluating the vasorelaxing effect of RRF-containing solutions made out of chicken retinas in the absence or presence of calcium.

Results: Chicken retinas induced vasorelaxation, whereas solutions incubated with Müller cell cultures did not. Moreover, the gliotoxin DL-α-aminoadipic acid, the microglia inhibitor minocycline, and the tetrodotoxin-resistant voltage-dependent sodium channel 1.8 inhibitor A-803467 could not reduce the RRF-induced relaxation. Concentration-response curves of veratridine were not enlarged in the presence of retinal tissue, and RRF-containing solutions made in the absence of calcium induced a substantial, but reduced vasorelaxation.

Conclusions: the RRF is not released from vascular cells and probably neither from glial cells. The retinal cell type that does release the RRF remains unclear. Veratridine does not stimulate the RRF release in mice, and the RRF release in chickens is calcium-dependent as well as calcium-independent.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02713683.2018.1496267DOI Listing

Publication Analysis

Top Keywords

rrf release
28
retinal tissue
12
voltage-dependent sodium
12
sodium channel
12
chicken retinas
12
rrf
11
retinal relaxing
8
relaxing factor
8
release
8
calcium-dependency rrf
8

Similar Publications

Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRH neurons in activation of the hypothalamic-pituitary-adrenal (HPA) axis is well established, the distribution and function of CRH-expressing neurons across the whole central nervous system are less understood. Stress responses activate complex neural networks, which differ depending on the type of stressor and on the sex of the individual.

View Article and Find Full Text PDF
Article Synopsis
  • Tetrabenazine (TBZ) is a medicine that helps with moving too much, but we don't know everything about how it works in the brain.
  • In experiments, TBZ was found to stop certain brain chemicals from being stored and released properly, which affects movement and behavior in mice.
  • The study also showed that another drug, MDMA, could still make mice more active even when TBZ was affecting the brain's chemical release, helping us understand how these drugs work together.
View Article and Find Full Text PDF

In this work, we developed multifunctional hydrogel nanoparticles (NPs) that can encapsulate anticancer drugs and imaging contrast agents as well. Mitomycin C (MMC) and rhodamine B (RB) were selected as models for anticancer drugs and imaging contrasting agents, respectively. Both MMC and RB were linked to the succinated polyvinyl alcohol polymer (PVA-SA).

View Article and Find Full Text PDF

Living cells have spontaneous ultraweak photon emission derived from metabolic reactions associated with physiological conditions. The ORCA-Quest CMOS camera (Hamamatsu Photonics, Japan) is a highly sensitive and essential tool for photon detection; its use with a microscope incubator (Olympus) enables the detection of photons emitted by embryos with the exclusion of harmful visible light. With the application of the second law of thermodynamics, the low-entropy energy absorbed and used by embryos can be distinguished from the higher-entropy energy released and detectable in their environment.

View Article and Find Full Text PDF

Deep Learning-Derived Myocardial Strain.

JACC Cardiovasc Imaging

July 2024

Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA. Electronic address:

Background: Echocardiographic strain measurements require extensive operator experience and have significant intervendor variability. Creating an automated, open-source, vendor-agnostic method to retrospectively measure global longitudinal strain (GLS) from standard echocardiography B-mode images would greatly improve post hoc research applications and may streamline patient analyses.

Objectives: This study was seeking to develop an automated deep learning strain (DLS) analysis pipeline and validate its performance across multiple applications and populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!