Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective.

Nutrients

Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.

Published: July 2018

Oxidative stress has been considered a key causing factor of liver damage induced by a variety of agents, including alcohol, drugs, viral infections, environmental pollutants and dietary components, which in turn results in progression of liver injury, non-alcoholic steatohepatitis, non-alcoholic liver disease, liver fibrosis and cirrhosis. During the past 30 years and even after the major progress in the liver disease management, millions of people worldwide still suffer from an acute or chronic liver condition. Curcumin is one of the most commonly used indigenous molecules endowed by various shielding functionalities that protects the liver. The aim of the present study is to comprehensively review pharmacological effects and molecular mechanisms, as well as clinical evidence, of curcumin as a lead compound in the prevention and treatment of oxidative associated liver diseases. For this purpose, electronic databases including “Scopus,” “PubMed,” “Science Direct” and “Cochrane library” were extensively searched with the keywords “curcumin or curcuminoids” and “hepatoprotective or hepatotoxicity or liver” along with “oxidative or oxidant.” Results showed that curcumin exerts remarkable protective and therapeutic effects of oxidative associated liver diseases through various cellular and molecular mechanisms. Those mechanisms include suppressing the proinflammatory cytokines, lipid perodixation products, PI3K/Akt and hepatic stellate cells activation, as well as ameliorating cellular responses to oxidative stress such as the expression of Nrf2, SOD, CAT, GSH, GPx and GR. Taking together, curcumin itself acts as a free radical scavenger over the activity of different kinds of ROS via its phenolic, β-diketone and methoxy group. Further clinical studies are still needed in order to recognize the structure-activity relationships and molecular mechanisms of curcumin in oxidative associated liver diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073929PMC
http://dx.doi.org/10.3390/nu10070855DOI Listing

Publication Analysis

Top Keywords

liver diseases
16
oxidative stress
12
molecular mechanisms
12
oxidative associated
12
associated liver
12
liver
10
liver disease
8
curcumin
6
oxidative
6
mechanisms
5

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Background: In patients with advanced hepatocellular carcinoma (HCC) following sorafenib failure, regorafenib has been used as an initial second-line drug. It is unclear the real efficacy and safety of sorafenib-regorafenib sequential therapy compared to placebo or other treatment (cabozantinib or nivolumab or placebo) in advanced HCC.

Methods: Four electronic databases (PubMed, Embase, Web of Science, and Ovid) were systematically searched for eligible articles from their inception to July, 2024.

View Article and Find Full Text PDF

Background: To assess the impact of attaining aggressive beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) targets on clinical efficacy in critical orthotopic liver transplant (OLT) recipients with documented early Gram-negative infections.

Methods: OLT recipients admitted to the post-transplant ICU between June 2021 and May 2024 having documented Gram-negative infections treated with targeted therapy continuous infusion (CI) beta-lactams, and undergoing therapeutic drug monitoring (TDM)-guided beta-lactam dosing adjustment in the first 72 hours were prospectively enrolled. Free steady-state concentrations (fCss) of beta-lactams (BL) and/or of beta-lactamase inhibitors (BLI) were calculated, and aggressive PK/PD target attainment was measured.

View Article and Find Full Text PDF

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!