Running on a non-motorized, curved-deck treadmill is thought to improve gait mechanics. It is not known, though, whether the change in gait carries over to running on a motorized treadmill on level ground. To determine the effect of running on a curved non-motorized treadmill (CNT) on gait characteristics, measured during a subsequent bout of running on a traditional motorized treadmill (TMT), sixteen healthy college-aged participants, aged (mean ± SD) 20.4 ± 1.6 years, volunteered to have their gait analyzed while running on a TMT and CNT. After familiarization with, and a warm-up on, both treadmills, each subject completed five 4-min bouts of running, alternating between traditional motorized and curved non-motorized treadmills: TMT-1, CNT-1, TMT-2, CNT-2, and TMT-3. Variables of interest included step length (m), stride length (m), imbalance score (%), and stride angle (°), and were measured using Optogait gait analysis equipment. We found differences in gait characteristics among TMT-1, TMT-2, and TMT-3, which can be attributed to running on the CNT. The results show that running on a CNT resulted in significant changes in gait characteristics (step length, stride length, imbalance score and stride angle). These findings suggest that running on a CNT can significantly influence running gait.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162380 | PMC |
http://dx.doi.org/10.3390/sports6030058 | DOI Listing |
J Sports Sci
November 2023
Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain.
The purpose of this study was to determine if curved non-motorized treadmills can reproduce overground running better than motorized treadmills by analysing the differences in joint kinematics (hip, knee, and ankle) using SPM. Nineteen recreational runners completed three randomized running tests on these surfaces. Kinematic data from the hip, knee, and ankle joints were collected.
View Article and Find Full Text PDFSensors (Basel)
December 2023
School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC 3065, Australia.
Inertial measurement units (IMUs) have been validated for measuring sagittal plane lower-limb kinematics during moderate-speed running, but their accuracy at maximal speeds remains less understood. This study aimed to assess IMU measurement accuracy during high-speed running and maximal effort sprinting on a curved non-motorized treadmill using discrete (Bland-Altman analysis) and continuous (root mean square error [RMSE], normalised RMSE, Pearson correlation, and statistical parametric mapping analysis [SPM]) metrics. The hip, knee, and ankle flexions and the pelvic orientation (tilt, obliquity, and rotation) were captured concurrently from both IMU and optical motion capture systems, as 20 participants ran steadily at 70%, 80%, 90%, and 100% of their maximal effort sprinting speed (5.
View Article and Find Full Text PDFInt J Exerc Sci
September 2022
Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA.
Treadmills are utilized as a training tool to improve aerobic fitness, but precise understanding of intensity and the corresponding physiological strain is critical for optimizing exercise prescription and associated adaptations. Running on non-motorized, curved treadmills may result in greater oxygen uptake (VO), increased heart rate (HR), and increased rating of perceived exertion (RPE) compared to traditional motorized treadmills. The purpose of this study was to investigate the physiological responses on non-motorized versus traditional motorized treadmills during speed-matched running.
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2021
Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain.
An increase in the popularity of running can be seen over the last decades, with a large number of injuries on it. Most of the running injuries are related to impact accelerations and are due to overuse. In order to reduce the risk of injury or to improve performance and health new treadmill designs have been created, as it can be the curved non-motorized treadmill.
View Article and Find Full Text PDFSports (Basel)
June 2018
Department of Exercise and Sport Sciences, University of South Carolina Aiken, Aiken, SC 29801, USA.
Running on a non-motorized, curved-deck treadmill is thought to improve gait mechanics. It is not known, though, whether the change in gait carries over to running on a motorized treadmill on level ground. To determine the effect of running on a curved non-motorized treadmill (CNT) on gait characteristics, measured during a subsequent bout of running on a traditional motorized treadmill (TMT), sixteen healthy college-aged participants, aged (mean ± SD) 20.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!