AI Article Synopsis

  • Fuchs Endothelial Corneal Dystrophy (FECD) is a genetic eye disease linked to a CTG repeat expansion in the TCF4 gene, affecting vision, especially in northern Europeans where not all cases show this mutation.
  • A study analyzed gene expression in corneas from FECD patients with (RE+) and without (RE-) the repeat expansion, revealing significant RNA mis-splicing in the RE+ group.
  • While no known mutations were found in RE- samples, rare variants in LAMC1 and TSPOAP1 genes were identified, suggesting alternative genetic factors might contribute to FECD.

Article Abstract

Fuchs Endothelial Corneal Dystrophy (FECD) is a late onset, autosomal dominant eye disease that can lead to loss of vision. Expansion of a CTG trinucleotide repeat in the third intron of the transcription factor 4 (TCF4) gene is highly associated with FECD. However, only about 75% of FECD patients in the northern European population possess an expansion of this repeat. The remaining FECD cases appear to be associated with variants in other genes. To better understand the pathophysiology of this disease, we compared gene expression profiles of corneal endothelium from FECD patients with an expanded trinucleotide repeat (RE+) to those that do not have a repeat expansion (RE-). Comparative analysis of these two cohorts showed widespread RNA mis-splicing in RE+, but not in RE- samples. Quantitatively, we identified 39 genes in which expression was significantly different between RE+ and RE- samples. Examination of the mutation profiles in the RE- samples did not find any mutations in genes previously associated with FECD, but did reveal one sample with a rare variant of laminin subunit gamma 1 (LAMC1) and three samples with rare variants in the gene coding for the mitochondrial protein peripheral-type benzodiazepine receptor-associated protein 1 (TSPOAP1).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028112PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200005PLOS

Publication Analysis

Top Keywords

trinucleotide repeat
12
re- samples
12
gene expression
8
corneal endothelium
8
fuchs endothelial
8
endothelial corneal
8
corneal dystrophy
8
associated fecd
8
fecd patients
8
re+ re-
8

Similar Publications

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

Background: Trinucleotide repeat expansions are an emerging class of genetic variants associated with various movement disorders. Unbiased genome-wide analyses can reveal novel genotype-phenotype associations and provide a diagnosis for patients and families.

Objective: The aim was to identify the genetic cause of a severe progressive movement disorder phenotype in 2 affected brothers.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage.

View Article and Find Full Text PDF

Background: Spinocerebellar ataxia type 3 (SCA3) is a hereditary disease caused by abnormally expanded CAG repeats in the ATXN3 gene. The study aimed to identify potential biomarkers for assessing therapeutic efficacy by investigating the associations between expanded CAG repeat size, brain and spinal cord volume loss, and motor functions in patients with SCA3.

Methods: In this prospective, cross-observational study, we analyzed 3D T1-weighted MRIs from 92 patients with SCA3 and 42 healthy controls using voxel-based morphometry and region of interest approaches.

View Article and Find Full Text PDF

Piper longum, commonly known as long pepper, is highly valued for its bioactive alkaloid piperine, which has diverse pharmaceutical and culinary applications. In this study, we used high-throughput sequencing and de novo transcriptome assembly to analyze the transcriptomes of P. longum leaves, roots, and spikes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!