[Profile Distribution of Soil Organic and Inorganic Carbon Under Different Land Use Types in the Loess Plateau of Northern Shaanxi].

Huan Jing Ke Xue

Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University,Yangling 712100, China.

Published: January 2018

Carbon storage in the Loess Plateau is affected by land use. In order to assess the differences in soil organic carbon (SOC) and soil inorganic carbon (SIC) under different land use patterns in deep soil profiles, we investigated the distribution characteristics of SOC and SIC at 0-20.0 m soil depth at three locations in the northern Shaanxi province (i.e., an economical plantation in Mizhi, a reforestation area in Shenmu, and a wind break and sand fixation forest district in Yuyang). The results showed that the order for SOC content was:pruning jujube tree (2.00 g·kg) > jujube tree (1.54 g·kg) > Caragana (0.97 g·kg) > degraded artificial grassland (0.81 g·kg) > pine forests (0.70 g·kg) > natural grass field (0.45 g·kg), which indicated significant differences between SOC content and land use types (<0.05). Similarly, the order of SIC content was:pruning jujube tree (11.66 g·kg) > jujube tree (11.59 g·kg) > Caragana (9.62 g·kg) > degraded artificial grassland (8.07 g·kg) > pine forests (4.32 g·kg) > natural grass field (0.47 g·kg). There were no significant differences between SIC content and soil profiles under the economical plantation of Mizhi and the reforestation area of Shenmu. There were significant differences for SIC content between an artificial economic forest, an area returning farmland to a forest (grass) profile, and a windbreak and sand fixation forest (<0.05). The SIC densities for pruning jujube tree, jujube tree, Caragana, degraded artificial grassland, pine forest, and natural grass field were 6.19, 7.71, 10.70, 10.78, 5.91, and 1.03 times that of its corresponding SOC density, respectively. It has been concluded that the soil carbon storage was significantly different for different land use patterns, and the SIC content was much higher than the SOC content in the soil profile.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201704157DOI Listing

Publication Analysis

Top Keywords

jujube tree
12
g·kg
11
soil organic
8
inorganic carbon
8
land types
8
loess plateau
8
soil profiles
8
economical plantation
8
plantation mizhi
8
mizhi reforestation
8

Similar Publications

Jujube (Ziziphus ujuba Mill.) holds great importance as a fruit tree in China, with strong tolerance to drought and saline stress, but its growth is limited by vulnerability to cold stress. Consequently, the role of MAPK cascades in mediating jujube cold stress response remains unclear, with the specific function of ZjMAPKK4 in this context yet to be fully elucidated.

View Article and Find Full Text PDF

Genome-Wide Identification of Xyloglucan Endotransglucosylase/Hydrolase Multigene Family in Chinese Jujube () and Their Expression Patterns Under Different Environmental Stresses.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.

The Xyloglucan endotransglucosylase/hydrolase (XTH) family, a group of cell wall-modifying enzymes, plays crucial roles in plant growth, development, and stress adaptation. The quality and yield of Chinese jujube () fruit are significantly impacted by environmental stresses, including excessive salinity, drought, freezing, and disease. However, there has been no report of the XTH encoding genes present in the Chinese jujube genome and their response transcription level under various stresses.

View Article and Find Full Text PDF

Functional Role of Odorant-Binding Proteins in Response to Sex Pheromone Component 8-14:Ac in (Busck).

Insects

November 2024

Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.

The plum fruit moth (PFM), , and the oriental fruit moth (OFM), , are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components 8-12:Ac and 8-12:Ac. The secondary sex pheromone components of PFMs consist of 8-12:OH, 8-14:Ac, and 10-14:Ac, while those of OFMs include 8-12:OH and 12:OH.

View Article and Find Full Text PDF

Comparative transcriptome analysis and heterologous overexpression indicate that the ZjZOG gene may positively regulate the size of jujube fruit.

BMC Plant Biol

December 2024

Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China.

Background: Fruit size is a crucial economic trait that impacts the quality of jujube (Ziziphus jujuba), however, research in this area remains limited. This study utilized two jujube cultivars with similar genetic backgrounds but differing fruit sizes to investigate the regulatory mechanisms affecting fruit size through cytological observations, transcriptome sequencing, and heterologous overexpression.

Results: The findings reveal that variations in mesocarp cell numbers during early fruit development significantly influence final fruit size.

View Article and Find Full Text PDF

Introduction: As the scale of cultivation expands, challenges such as substrate shortages and rising production costs in mushroom cultivation have become increasingly prominent. Fruit tree pruning residue has the potential to serve as an alternative substrate, offering a sustainable solution. This study evaluates the feasibility of incorporating various types of fruit tree pruning residues into cultivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!