Two hundred eighteen PM and 202 PM samples were collected at three sampling sites to study the pollution characteristics of carbonaceous aerosols in Yulin from July 2015 to March 2016. Organic carbon (OC) and elemental carbon (EC) in the PM and PM samples were analyzed by a Multiwavelength Thermal/Optical Carbon Analyzer, and the characteristics, including pollution levels, temporal and spatial distributions, and possible sources of OC and EC, were investigated. The results showed that the OC and EC mass concentrations in PM in Yulin were 10.99 and 5.11 μg·m, respectively, while the OC and EC mass concentrations in PM were 7.51 and 4.70 μg·m, respectively. Strong correlations between OC and EC were found in PM(=0.58) and PM(=0.60). The winter average concentrations of secondary organic carbon (SOC) in PM and PM were 14.50 μg·m and 6.74 μg·m, respectively. The SOC/OC ratios in both the PM and PM were higher than 0.5. The contribution of SOC to OC was 80.6% in PM and 77.7% in PM, which were the highest in the summer, in accordance with the high temperature and strong solar radiation in the summer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201702102 | DOI Listing |
BMC Surg
January 2025
Global Surgery Division, Department of Surgery, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
Climate change is an emerging global health crisis, disproportionately affecting low- and middle-income countries (LMICs) where health outcomes are increasingly compromised by environmental stressors such as pollution, natural disasters, and human migration. With a focus on promoting health equity, Global Surgery advocates for expanding access to surgical care and enhancing health outcomes, particularly in resource-limited and disaster-affected areas like LMICs. The healthcare industry-and more specifically, surgical care-significantly contributes to the global carbon footprint, primarily through resource-intensive settings, i.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Robotics, Hanyang University, Ansan, 15588, Republic of Korea.
Agriculture is an essential component of human sustenance in this world. These days, with a growing population, we must significantly increase agricultural productivity to meet demand. Agriculture moved toward technologies as a result of the demand for higher yields with less resources.
View Article and Find Full Text PDFSci Rep
January 2025
Joint Lab Artificial Intelligence and Data Science, Osnabrück University, 49074, Osnabrück, Germany.
This study examines how Climate-Related Financial Policies (CRFPs) support decarbonization and renewable energy transitions across 87 countries from 2000 to 2023. Using the Policy Sequencing Score (PSS) and a bindingness-weighted adoption indicator, it explores the relationships between CRFPs, CO2 emissions, and Renewable Energy Production (REP) across diverse economic and institutional contexts. Findings reveal significant variation in outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.
In recent years, machine learning has gained substantial attention for its ability to predict complex chemical and biological properties, including those of pharmaceutical compounds. This study proposes a machine learning-based quantitative structure-property relationship (QSPR) model for predicting the physicochemical properties of anti-arrhythmia drugs using topological descriptors. Anti-arrhythmic drug development is challenging due to the complex relationship between chemical structure and drug efficacy.
View Article and Find Full Text PDFSci Rep
January 2025
School of Earth and Ocean Sciences, University of Victoria, PO Box 1700, Victoria, BC, V8W 2Y2, Canada.
Reaching net zero emissions and limiting global warming to 2 °C requires the widespread introduction of technology-based solutions to draw down existing atmospheric levels and future emissions of CO. One such approach is direct air CO capture and storage (DACCS), a readily available, yet energy-intensive process. The combination of DACCS and ocean thermal energy conversion (OTEC) allows for independently powered carbon capture plants to inject concentrated carbon into deep marine sediments where storage is generally safe and permanent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!