To explore the effects of different iron minerals on soil arsenic bioaccessibility, ferrihydrite, goethite and hematite were used in PBET, SBRC and IVG in-vitro experiments in this study. The relationship between arsenic bioavailability in gastric, small intestinal phases and arsenic speciation was also studied. The results showed that when 1% ferrihydrite was added, arsenic bioavailability in gastric phase was 2.22%, 5.11% and 7.43% by PBET, SBRC and IVG methods, respectively, while in the small intestinal phase it was 3.39%, 2.33% and 6.18%. At an elevated ferrihydrite dosage of 2%, significant difference in arsenic bioavailability was observed in both phases (<0.05). According to experiments, the addition of the same amount of different iron minerals had contributed to the decrease in arsenic bioavailability to varying extents in contrast with the blank group, in the descending order of ferrihydrite(F1) > goethite(G1) > hematite(H1) (F2 > G2 > H2). Total arsenic in exchangeable (F1) and specifically sorbed (F2) state was found positively correlated with arsenic bioavailability in gastric phase by PBET, SBRC and IVG methods, the correlation coefficient of which being =0.93, =0.002, =0.90, =0.004 and =0.89,=0.006, respectively. It was also found that arsenic bioavailability in gastric phase was positively correlated with total arsenic in F1 and F2 states by PBET(=0.94,=0.001) and IVG (=0.87,=0.009) methods, but no significant correlation was observed by SBRC method. Additionally, three experiments showed that amorphous iron bound arsenic had significant negative correlation with arsenic bioavailability in gastric phase and small intestinal phase, except that no correlation was found in small intestinal phase by SBRC method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201608107 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, CZ-61300, Czech Republic.
The diffusive gradient in thin films technique (DGT), with a resin gel based on Lewatit® FO 36 was used for the first time to predict arsenic (As) bioavailability in soils collected in different environmental contexts. The predicted bioavailability, determined by fluxes to DGT, was compared with the bioavailability and bioaccumulation in the plants (Calendula officinalis), where a strong correlation was observed (r = 0.8857 (C/C) and r = 0.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Chongqing Key Laboratory of Land Quality Geological Survey, Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China.
Heavy metals (HMs) pollution in agricultural soil-rice systems has attracted worldwide attention as it directly threatens regional ecological security and human health. To understand the heavy metal pollution of agriculture soil and rice in the high geological background areas, a total of 200 paddy soil and rice samples were collected in southeast Chongqing. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in paddy soil and rice were analyzed.
View Article and Find Full Text PDFHeliyon
December 2024
The Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, The Key Laboratory of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China.
Cadmium (Cd) and arsenic (As) contamination risk in paddy soils has raised global concern. In order to scientifically and objectively evaluate the bioavailability of soil Cd, As and the risk of Cd or As threshold in contaminated farmland, this study was conducted to investigate different types of extractants for their potential extraction efficiency of Cd and As. Soils from two different parent materials in Hunan, Yueyang and Yiyang, typical double-cropping rice production areas in the south of China, were used as test soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!