Formation characteristics and transferring feature of nitrogenous/carbonaceous disinfection by-products have been observed under different ozone dosages and pH conditions, and essential nature conversion of Algae organic matters has been also studied concurrently, based on high algae-laden water. The results showed as follows:reduction of Microcystis aeruginosa could reach 36% at the ozonation concentration of 28.92 mg·L. Humic acid-like compounds first increased and then decreased with continuing addition of ozone dosage, whereas soluble microbial products, fulvic acids and aromatic protein substance all diminished. Low dosage of ozone had certain effect on control of dichloroacetonitrile(DCAN) and trichloroacetonitrile (TCAN) formation potential, yet augmented the yield of trichloronitromethane (TCNM) and 1,1,1-trichloroacetone(1,1,1-TCP) precursors, and N-DBPs formation potential was promoted with the increase of ozone dosage. Algae removal efficiency was relatively the best under the acidic condition, meanwhile, UV and DOC increased with the rise of pH, though the change was not outstanding. Humic acid-like compounds decreased with the rise of pH; ozonation could degrade the soluble microbial products and the consequence was affected little by the change of pH. DCAN and TCAN formation potential decreased with the rise of pH; TCNM formation potential appeared to be the highest when the pH was 10, whereas the highest 1,1,1-TCP formation potential was found at pH 7.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201608080 | DOI Listing |
Diabetol Metab Syndr
January 2025
Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
Background: The potential therapeutic role of magnesium (Mg) in type 2 diabetes mellitus (T2DM) remains insufficiently studied despite its known involvement in critical processes like lipid metabolism and insulin sensitivity. This study examines the impact of Mg-focused nutritional education on lipid profile parameters, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in T2DM patients.
Methods: Thirty participants with T2DM were recruited for this within-subject experimental study.
Chin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
BMC Chem
January 2025
Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye.
This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
First Central Clinical Medical Institute, Tianjin Medical University, Tianjin, China.
Background: To identify the relationship between BMI or lipid metabolism and diabetic neuropathy using a Mendelian randomization (MR) study.
Methods: Body constitution-related phenotypes, namely BMI (kg/m), total cholesterol (TC), and triglyceride (TG), were investigated in this study. Despite the disparate origins of these data, all were accessible through the IEU OPEN GWAS database ( https://gwas.
Alzheimers Res Ther
January 2025
Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.
Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!