In order to study the variation of water-soluble inorganic ions in the four suburbs of Beijing using the atmospheric fine particulate matter rapid trapping system and chemical composition analysis system (RCFP-IC), we carried out measurements for nine water-soluble inorganic ions (Cl, NO, NO, SO, Na, NH, K, Mg, Ca) in PM with continuous on-line observations for one year in Beijing's southern suburbs in 2016. The transport process of pollutants and the potential sources of pollutants were evaluated by combining a trajectory clustering method and potential source contribution factor analysis method (PSCF). During the observation period, the total concentration of the nine water-soluble inorganic ions was 38.6 μg ·m, and results showed that the concentration in winter and spring was high and in summer and autumn was low. The order of the concentration from high to low was SO > NO > NH > Ca > NO > Cl > Na > K > Mg. In winter, the SO, NO and NH accounted for 75.7% of the total measured water-soluble ions, followed by 72.8% in spring and 60.2% in summer. With an increase in air pollution, the concentrations of SO, NO, and NH increased significantly, indicating that SO, NO, and NH were closely related to the deterioration of air quality. SO was dominant in the formation of secondary ions compared to NO and NH; and SO, NO, and NH had significant diurnal variations. The diurnal variation of the SO statistic (hours) was bimodal, and the peak values were at about 10:00 and 18:00. The diurnal variation of NO and NH had single peaks, with the peak appearing at 10:00. The trend of the diurnal variation for these two ions was similar. Finally, the sources of pollution in the southern suburbs of Beijing mainly included secondary sources, coal-fired sources, and mixed sources of dust and dust. The main potential source of pollution in the southern suburbs was in the southeastern part of the observation site, while the northeastern airflow was favorable for the diffusion and dilution of pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201709003 | DOI Listing |
Dalton Trans
January 2025
Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland.
Alkaptonuria (AKU) is a genetically determined disease associated with disorders of tyrosine metabolism. In AKU, the deposition of homogentisic acid polymers contributes to the pathological ossification of cartilage tissue. The controlled use of biomimetics similar to deposits observed in cartilage during AKU potentially may serve the development of new bone regeneration therapy based on the activation of osteoblasts.
View Article and Find Full Text PDFNano Lett
January 2025
School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
Water-soluble metal-organic cages (WSMOCs) show high potential as antitumor agents, while the targeted functionalization of WSMOCs toward enhanced antitumor performances is a challenging task. Herein, WSMOCs were functionalized with donor-acceptor (D-A) systems for synergistic photothermal-chemotherapy. Octahedral [ML] cages based on a 2,4,6-tri(2-pyridine-4-yl)-1,3,5-triazine (TPT) acceptor and M(bpy) (M = Pd for , Pt for ) nodes were functionalized with tetrathiafulvalene (TTF) to form and .
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6-202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%-60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).
View Article and Find Full Text PDFChemSusChem
December 2024
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, 5320, Denmark.
We are facing a world-wide shortage of clean drinking water which will only be further exacerbated by climate change. The development of reliable and affordable methods for water remediation is thus of utmost importance. Chlorine (which forms active hypochlorites in solution) is the most commonly used disinfectant due to its reliability and low cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!