[Removal Efficiency and Mechanism of Removal by Humic Acid of the Integrated Floc-ultrafiltration Process].

Huan Jing Ke Xue

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: March 2018

In recent years, the integrated ultrafiltration (UF) membrane process has been widely used due to its high removal efficiency, slight membrane fouling, and small land use. However, a number of problems gradually occurred regarding the integrated UF process caused by the granular adsorbents used, such as powdered activated carbon, carbon nano-tube, nanoscale zerovalent iron, etc. Severe membrane surface damage was easily caused by these granular adsorbents after a long running time, and the cost of most adsorbents was very high. In this study, to effectively overcome these problems, cheap and loose aluminum hydrolyzed flocs were directly injected into the membrane tank in the presence of humic acid (HA), with the aim of investigating the removal efficiency of HA and the corresponding membrane behavior. The results showed that the removal efficiency of HA could be influenced by aeration mode, floc injection frequency, and floc dosage. Compared with intermittent aeration and one-time injection, a loose "protection membrane" layer was formed with continuous aeration and batch injections. Therefore, HA molecules were largely removed, leading to the dramatic alleviation of membrane fouling. The transmembrane pressure significantly increased to 74.8 kPa in the absence of flocs after running for 5 days, but that only increased by 6.3 kPa with continuous aeration and an injection frequency of once every 2 d (each addition consisted of 5.4 mmol·L flocs) after running for 8 days. The removal efficiency of HA was 73.3% (8 d), which was much higher than in the absence of flocs (5 d, 32.1%). Additionally, only a few HA molecules were adsorbed onto the membrane pores with the batch injections, and a loose cake layer was the main fouling mechanism. With higher dosages of flocs injected each time, the average membrane pore diameter was larger after washing. Based on this excellent performance, this floc-integrated UF membrane technology indeed shows large application potential in water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201706137DOI Listing

Publication Analysis

Top Keywords

removal efficiency
16
membrane
9
humic acid
8
membrane fouling
8
caused granular
8
granular adsorbents
8
injection frequency
8
continuous aeration
8
batch injections
8
absence flocs
8

Similar Publications

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

A chitosan-based sensing membrane for on-site and sensitive dual-channel portable detection and efficient adsorption of Pb in groundwater.

Anal Chim Acta

February 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China. Electronic address:

The presence of lead ion (Pb) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb in groundwater.

View Article and Find Full Text PDF

ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.

J Biomed Inform

January 2025

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!