Surface water, and undisturbed sediment cores from the Qinshui River in Gonghu Bay were collected to carry out a simulation experiment in a laboratory to study the effect of -immobilized nitrogen-cycling bacteria on nitrogen removal mechanisms from the river water. In this study, the transformation and fate of ammonium among four different treatment groups were investigated by using a stable N isotope pairing technique combined with high-throughput sequencing technology[Treatment A:bare sediment, Treatment B:sediment+immobilized nitrogen cycling bacteria (INCB), Treatment C:sediment+, Treatment D:sediment+INCB+]. The results of the N mass-balance model showed that there were three pathways to the ultimate fate of nitrogen:precipitated with the sediments, absorbed by and consumed by microbial processes[denitrification and anaerobic ammonium oxidation (ANAMMOX)]. The percentages of assimilated in the NH were 25.44% and 19.79% for treatments C and D. The sediment storage ratio of NH accounted for 7.94%, 5.52%, 6.47% and 4.86% in treatments A, B, C, and D, respectively. The proportion of NH lost as N-labelled gas were 16.06%, 28.86%, 16.93% and 33.09% in the four different treatment groups, respectively. Denitrification and anammox were the bacterial primary processes in N and NO production. The abundance and diversity of microorganisms was relatively higher in the treatment with -immobilized nitrogen cycling bacteria (E-INCB) assemblage technology applied. Furthermore, the removal rates of NH were 24%, 34.38%, 48.84% and 57.74% in treatments A, B, C and D, respectively. These results show that the E-INCB assemblage technology may improve the capacity for nitrogen removal from the river water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201702120 | DOI Listing |
Environ Res
January 2025
Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Center for Global Change and Ecological Forecasting, Institute of Eco-Chongming, Shanghai, China. Electronic address:
Eutrophication caused by human activities has severely impacted freshwater ecosystems, leading to harmful cyanobacterial blooms that threaten water quality and ecosystem stability. During blooms, denitrification is a key process for nitrogen removal, which can occur both in the sediment and in the waterbody mediated by cyanobacterial aggregate (CA)-associated microorganisms. In this study, the structure, dynamics and assembly mechanisms of CA-associated nirK-, nirS-, and nosZ-encoding denitrifying communities were investigated in the eutrophic Lake Taihu across the bloom season.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China. Electronic address:
Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy. Electronic address:
Rotational grazing (RG) could be a valid alternative to continuous grazing (CG) in Mediterranean extensive pastures to fight land degradation. This study aimed to compare soil quality under RG and CG management, in paired RG-CG Portuguese pasture areas under strong aridity stress, with RG sites converted from CG management in 2018. Soils were sampled in 2022, at 10 cm depth, over 71 ha of RG and 37 ha of CG pastures, subdivided in 16 and 10 sampling plots, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!