There has been a growing interest in soil replacement and in-situ stabilization techniques in recent years. Many techniques in the remediation of contaminated soils have been proven to be effective methods. In this study, lime and calcium phosphate were added to immobilize the heavy metals in contaminated soils. The long-term application potential of these techniques were evaluated by taking the demonstration project of the soil remediation in Tongguan of Shaanxi as the case study.The status of heavy metal contamination in the study area resulted from artisanal gold mining was discussed. The strategies of remediation and the evaluation of the remediation results including the safety of agricultural practices were also studied. The results showed that soil was seriously contaminated in the study area with Cd, Pb, and Hg, and the residue mining waste was the main source. The potential ecological risk index ranged from 668 to 10969, suggesting that all the samples posed a very strong ecological hazard. Based on the pollution status, the soil replacement method and stabilization method were applied. Acceptable remediation results were obtained with lower total metal content (except Cd) and decreased heavy metal availability. However, the metal content of agricultural products was higher than the permissible value according to GB 2762-2012, which means that agricultural practices pose risks on remediated soils. Soil replacement and stabilization would be practical techniques for heavy metal polluted soil remediation. However, a consecutive investigation should be conducted for the assurance of food safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201701122 | DOI Listing |
Sci Total Environ
January 2025
Université du Québec à Trois-Rivières Trois-Rivieres, Quebec, Canada.
Management of heterogeneous construction, renovation, and demolition (CRD) wood residues in Québec brings into light, a widespread topic under discussion related to their current disposal methods in landfills, that may lead to environmental concerns. With rising forfeitures from a legal standpoint, alternative treatment methods for CRD wood wastes are being explored. Thermochemical biomass conversion techniques can be employed to depolymerize low-quality end-of-life CRD wood and valorize it to bio-based products.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Sustainable Environmental Processes (Environmental Bioprocesses), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:
Hydrophobic organic compounds (HOCs), such as pyrene, pose significant challenges for microbial-based remediation in soil due to limited substrate availability and the sustainability of augmented microbes. Research targets are to investigate the potential of biofilm-forming bacterial cells to enhance pyrene bioavailability and biodegradation in two different hydrocarbon-contaminated soil microcosms, employing microbiological, molecular, and chemical analysis validated through statistical tools. The microcosm augmented with strong biofilm bacterial consortia (A) significantly enhanced pyrene availability by 1-1.
View Article and Find Full Text PDFJ Contam Hydrol
January 2025
BCEG Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
The dissolution of polycyclic aromatic hydrocarbons (PAHs) from coal tar at former manufactured gas plant (FMGP) sites is a long-term threat to groundwater quality. The dissolution rate is often limited by an increase in the viscosity of the non-aqueous phase liquid (NAPL) as the lower molecular weight compounds are depleted over time, and this slow mass transfer prevents the effective application of remediation technologies that rely on NAPL-to-water mass transfer to remove or degrade mass. Increasing subsurface temperatures has the potential to increase mass transfer at FMGP sites by increasing PAH solubility and reducing NAPL viscosity.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!