For revealing the characteristics of antibiotic resistance genes (ARGs) in wastewater treatment systems, real-time PCR was adopted to investigate the variation of abundances of cell-associated ARGs and cell-free ARGs, in a municipal wastewater treatment system (M for short) and a coking wastewater treatment system (C for short). In system M, the absolute abundances of the cell-associated ARGs, , and , were much higher than those of the cell-free fractions in the influent. The biological treatment process did not enrich antibiotic resistance bacteria (ARBs) and membrane filtration of the MBR effectively reduced both cell-associated and cell-free DNA in water. The total ARGs removal was 2.54-4.95 logs. In system C, the biological treatment process enriched the -carried ARBs; however, the relative and absolute abundances of cell-free were decreased. The succeeding process, coagulation-sand filtration, decreased the absolute abundance of cell-associated , but increased the absolute abundance of cell-free in water. The proportion of cell-free in total gene increased from 0.05% in the biological treatment effluent to 1.33% in the sand filtration effluent and further increased to 9.31% after the effluent was kept at 25℃ and at dark for five days. The ratio of cell-free ARGs to total ARGs increased with deep removal of ARBs and lysis of residual cells. The risk of ARG proliferation by cell-free DNA in the effluent needs further evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201703256 | DOI Listing |
<b>Background and Objective:</b> Cadmium (Cd) is one of the heavy metal pollutants and its accumulation impacts the sustainability of marine organisms. Current research aimed to isolate and identify the cadmium-reducing bacteria from contaminated coastal sediment in Karangsong Port, Indramayu, Indonesia. The isolates were investigated for their potential to reduce cadmium and showed the cadmium reduction drastically up to 50% at 6 hrs treated under different cadmium concentrations of 0, 5, 1 and 1.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
To ensure high quality of food and water, the identification of traces of pathogens is mandatory. Rapid nucleic acid-based tests shorten traditional detection times while maintaining low detection limits. Challenging is the loss of nucleic acids during necessary purification processes, since elution off solid surfaces is not efficient.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, 7867161167, Iran.
This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, 75242, Indonesia.
The use of eggshells as a primary source for developing value-added materials has garnered significant attention in recent years due to their effectiveness as an excellent adsorbent and support. In this study, the Solid-State Dispersion (SSD) method was utilized to prepare composite photocatalysts of eggshells (ES)/TiO₂ in various ratios. TiO₂ and eggshell photocatalysts were also employed as control samples.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno 61200, Czech Republic.
Microrobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-CN is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-CN for these applications is still in its early stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!