Samples of wastes and leachates were collected from a landfill site and a leachate treatment plant[i.e., equalization basin, anaerobic zone, oxidation ditch, and membrane bioreactor (MBR) section]. Dissolved organic matter (DOM) was extracted from the wastes and leachates, and its composition, evolution, and complexation characteristics with heavy metals were studied using UV-Visible and fluorescence spectroscopy combined withH nuclear magnetic resonance. The aliphatic compounds were found to be the main substances in DOM in the fresh landfill wastes (<5 a), and the relative content of aromatics and substituent groups, i.e., carbonyl, hydroxyl, and carboxyl functional groups, decreased during the initial process. On the other hand, carbohydrates and organic amines were observed to be the main substances in DOM obtained from the intermediate and old landfill wastes (>5 a), and the relative content of aromatics and substituent groups (carbonyl, hydroxyl, and carboxyl functional groups) increased persistently during the process of organic matter humification. The aliphatics, carbohydrates, and organic amines all existed in DOM from the equalization basin Carbohydrates and aromatic compounds increased rapidly after the anaerobic, aerobiotic, and membrane treatment. However, low molecular weight organic matter and alkyl chain substances decreased during the leachate treatment process and the side chain of the aliphatics was shortened despite the increase in its content. The distribution of zinc in the wastes and leachates was influenced by the complexation with the nitrogen-and oxygen-containing functional groups, whose effect on other metals was not obvious.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201703141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!