[Analysis of the Characteristics of Groundwater Quality in a Typical Vegetable Field, Northern China].

Huan Jing Ke Xue

Institute of Environmental Standards, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Published: September 2017

This study explores the impact of facility farming on the origin and composition of groundwater and on the distribution characteristics of inorganic salts, heavy metals, and dissolved organic matter in groundwater in a typical greenhouse vegetable planting area in North China plains. The methods used include conventional analysis, UV-Visible, and fluorescence spectroscopy combined with parallel factor analysis, principle components analysis, and two-dimensional (2D) hetero-spectral correlation spectra techniques. The results showed that the hydrochemistry type of groundwater in the facility vegetable field was Cl-SO, the nitrogen content was higher than the National Groundwater V Class Quality Standard (GB/T14848-93), and the heavy metal content was lower than the National Drinking Water Standard (GB5749-2006). The nitrification process was blocked due to a strongly reducing atmosphere and shallow depth in groundwater, which caused high concentrations of NH-N. Part of the toxic sulfur-containing metal content increased after the application of inorganic fertilizers. The sources of dissolved organic matter in groundwater were similar; the organic manure components which leach into groundwater were recently produced by microbial metabolism. The main components of dissolved organic matter were small-molecule-biodegradable protein-like substances and the fulvic-like content binding to them. The fulvic-like content that bound to protein-like content in vegetable planting groundwater was stable, while the protein-like content was greatly influenced by the cultivation process of the organic manure application. In the process of vegetable planting, organic manure should be applied scientifically and the supervision of the planting area is crucial.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201703073DOI Listing

Publication Analysis

Top Keywords

dissolved organic
12
organic matter
12
vegetable planting
12
organic manure
12
groundwater
9
vegetable field
8
matter groundwater
8
planting area
8
metal content
8
fulvic-like content
8

Similar Publications

Microbial metabolism in wormcast affected the perturbation on soil organic matter by microplastics under decabromodiphenyl ethane stress.

J Hazard Mater

January 2025

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Large-scale plastic wastes annually inevitably induce co-pollution of microplastics (MPs) and novel brominated flame retardants (NBFRs), while gaps remain concerning their effect on terrestrial function. We investigated the impact of polylactic acid (PLA) or polyethylene (PE) MPs after aging in soil-earthworm microcosms under decabromodiphenyl ethane (DBDPE) contamination. MPs altered the food (i.

View Article and Find Full Text PDF

Human activities and climate change have significantly increased humic substances in freshwater ecosystems over the last few decades. This increase is particularly concerning during seasonal changes or after heavy rainfall, when concentrations can easily increase up to tenfold. This phenomenon, known as "browning," has unknown consequences for aquatic organisms.

View Article and Find Full Text PDF

Diarrhetic shellfish toxins (DSTs) are widespread in marine environments, posing potential threats to marine ecosystems, shellfish aquaculture, and human health. Despite their prevalence, knowledge of the stability of dissolved DSTs in seawater is still limited. This study aimed to investigate the effects of bacteria, temperature, and irradiation on the stability of dissolved okadaic acid (OA) and dinophysistoxin-1 (DTX1) in seawater.

View Article and Find Full Text PDF

Interactive effects of soil dissolved organic matter (DOM) and Per- and polyfluoroalkyl substances on contaminated soil site: DOM molecular-level perspective.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

Dissolved organic matter (DOM), as the most active soil component, plays a crucial role in regulating the transport of contaminants. Per- and polyfluoroalkyl substances (PFAS) have been found to be widespread contaminants in the soil environment, and their migration would be also affected by DOM. Herein, the surface and subsurface soil samples collected from two PFAS manufacturing factories were studied for the variation characteristics of DOM under PFAS contamination, and the interaction between DOM and PFAS in soil was further explored.

View Article and Find Full Text PDF

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!