Biological aerosol particles play a crucial role in cloud formation and succession of ecosystems and have a large impact on human health. However, the variations in the concentration, composition, and viability of biological particles remain unclear. This study, conducted in January 2013 and January 2015 in Beijing, explores the influence of meteorological conditions on the variations in the concentration and composition of biological particles. Concentrations of biological particles were measured by an online optical detector, waveband integrated bioaerosol sensor (WIBS-4A). The composition of bacterial communities within biological particles was measured by 16S rDNA sequencing. The results showed that the number concentration of biological particles ranged from 2 L to 150 L during winter. The wind could largely influence the concentration and composition of biological particles. During gusty northwesterly winds, when wind speed was above 4 m·s and wind direction was from the northwest (~30°), the concentration increased by one order of magnitude, and the composition of bacterial communities sharply changed. After the passage of gusty winds, the composition gradually changed back to its prior state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201701110 | DOI Listing |
Phys Imaging Radiat Oncol
October 2024
Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark.
Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.
View Article and Find Full Text PDFBiological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.
View Article and Find Full Text PDFInt J Pharm X
June 2025
State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.
Systemic administration of methotrexate (MTX), widely regarded as one of the most effective treatments for psoriasis, poses significant challenges due to its high toxicity, limited solubility, and potential for adverse effects. Consequently, developing a topical form of MTX may offer a safer and more effective strategy for psoriasis management. Silk fibroin (SF), a protein-based biomacromolecule, has shown considerable promise as a nanocarrier for sustained and targeted drug delivery, owing to its exceptional physicochemical and biological properties.
View Article and Find Full Text PDFCommun Phys
December 2024
Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland.
Extracellular vesicles (EVs) are a part of a cell-to-cell communication system of prokaryotic and eukaryotic organisms. Their ability to penetrate biological barriers and to transfer molecules between cells shows their potential as a novel class of drug delivery platform. However, because of the great heterogeneity of EVs and the complexity of biological matrices from which they are typically isolated, reliable quality control procedures need to be established to ensure their safety for medical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!