In this study, microbial fuel cell coupled constructed wetland (CW-MFC) was constructed for azo dye reactive brilliant red X-3B degradation and electricity production. The effects of support matrix and cathode areas on the degradation of X-3B and the electricity production of CW-MFC were investigated in this work to improve the performance of CW-MFC. The highest decolorization efficiency was 92.70% and was obtained when the CW-MFC was constructed with support matrix S3 with particle size of 10 mm and porosity of 30%. Small particle size increased the microbial biomass of the bottom layer of CW-MFC, which would promote the decolorization of X-3B in the bottom layer. However, it may cause the lack of nutrition in electrode layer and the increase in resistance of mass transfer, which would lead to the decline of electricity production. The decolorization efficiency and the power density of CW-MFC increased concomitantly with the increase of cathode areas, and the CW-MFC got the highest decolorization efficiency of 99.41% when the cathode area was 594 cm. The electricity production performance became stable when the cathode area continued to increase, while the decolorization efficiency declined. This may be attributed to that more electrons were transferred to the cathode to produce current instead of used in degradation of X-3B.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201608193DOI Listing

Publication Analysis

Top Keywords

electricity production
16
decolorization efficiency
16
support matrix
12
cathode areas
12
microbial fuel
8
fuel cell
8
cell coupled
8
coupled constructed
8
constructed wetland
8
matrix cathode
8

Similar Publications

The "no-show" problem in healthcare refers to the prevalent phenomenon where patients schedule appointments with healthcare providers but fail to attend them without prior cancellation or rescheduling. In addressing this issue, our study delves into a multivariate analysis over a five-year period involving 21,969 patients. Our study introduces a predictive model framework that offers a holistic approach to managing the no-show problem in healthcare, incorporating elements into the objective function that address not only the accurate prediction of no-shows but also the management of service capacity, overbooking, and idle resource allocation resulting from mispredictions.

View Article and Find Full Text PDF

Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.

View Article and Find Full Text PDF

Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element.

View Article and Find Full Text PDF

Regulating Intermediate Adsorption and Promoting Charge Transfer of CoCr-LDHs by Ce Doping for Enhancing Electrooxidation of 5-Hydroxymethylfurfural.

Small

January 2025

Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.

View Article and Find Full Text PDF

With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!