The composition and distribution characteristics of chromophoric dissolved organic matter(CDOM) of Changjiang Estuary and its adjacent waters in spring (March 2015) and summer (July 2015) were evaluated by excitation-emission matrix spectroscopy (EEMs) in combination with parallel factor(PARAFAC) analysis. Three humic-like components[C1(370/495 nm),C2(330/405 nm),C3(365/440 nm)] and one protein-like component[C4(295/345 nm)] were identified. The distribution patterns of the four components in spring and summer were almost the same, showing a decreasing trend from Changjiang Estuary to adjacent waters. In spring, the high value areas of three humic-like components were located inside of Changjiang Estuary, and the high value areas of the protein-like component were located in the South Passage of Changjiang Estuary. In the surface layer, the CDOM was mainly from terrestrial input and human activities; the influence of terrestrial weakened in the middle layer because of the lower fluorescence intensity values; and in the bottom layer the fluorescence values were higher than those in the middle layer, which was caused by sediment resuspension. There were high value areas in the Daishan Island, which were related to human activities. In summer, the high value areas of CDOM were almost the same as those in spring, and all layers had similar fluorescence intensity values, which indicated that they were mixed evenly. CDOM in spring and summer had high humification index (HIX) values in the Changjiang Estuary, whereas for biological index (BIX), its high values appeared in the adjacent waters. Four components (C1-C4), and DOC, TN, TP, DO, Chl-a, Salinity were evaluated by redundancy analysis (RDA), which indicated that C1-C4 and TN, TP were mainly affected by terrestrial input and human activities, and DOC was affected by terrestrial and marine source together. The use of EEMs-PARAFAC in combination with multivariate analysis to parse the composition of CDOM revealed the source of CDOM and main influencing factors in Changjiang Estuary and adjacent waters, and plays an important role in the biogeochemical research of biogenic elements in estuarine waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201611173 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China. Electronic address:
Aquaculture systems contribute to atmospheric NO, but the magnitude of this NO source is largely uncertain. Here, we synthesized data from 139 aquaculture sites based on 59 peer-reviewed publications, and estimated that China's aquaculture systems emitted 9.68 Gg N yr (4.
View Article and Find Full Text PDFEnviron Pollut
November 2024
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
As a major source of microplastics (MPs) for global oceans, estuarine MPs pose challenges for numerical modeling due to their particle diversity, while hydrodynamics and suspended particulate matter (SPM) further exacerbate transport prediction uncertainties. This study employs a categorization framework to pinpoint 16 representative MPs types, precisely simulating their transport processes in the Yangtze River estuary (YRE). Furthermore, spatial links between SPM concentrations and MP types at 1800+ simulated sites were examined using ArcGIS and bivariate Local Indicators of Spatial Association (BI-LISA).
View Article and Find Full Text PDFSci Rep
November 2024
Nanjing Geological Survey Center, China Geological Survey, Nanjing, 210016, China.
Sci Total Environ
December 2024
State Key Laboratory of Marine Environmental Science, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China; College of the Environment and Ecology, Xiamen University, No.4221, Xiang'an South Road, Xiang'an District, Xiamen 361102, Fujian, China. Electronic address:
Complex tidal processes and suspended particulate matter (SPM) behavior influence the land-sea transport of terrestrial contaminants in estuaries. Contaminants are generally trapped within the estuarine maximum turbidity zone (MTZ), where SPM concentrations peak, misleading flux estimation. Here, we conducted high-resolution continuous sampling over two tidal cycles within the MTZ of a semidiurnal estuary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!