Soil active organic carbon is the most important carbon pool and a good indicator in ecosystem management due to its great significance in soil carbon cycling and soil quality.In order to investigate the effect of biochar (BC) addition on soil organic matter fractions,apple tree twigs were used to produce BC at 300,400,500 and 600℃,respectively.Elemental analysis and Fourier transform infrared (FTIR) spectroscopy were used to determine the characteristics of BC.Four kinds of BC were added into soils at five application rates (0,0.5%,1%,2% and 3%) and incubated at 25℃ in lab for over 360 days.Soil organic carbon (SOC),microbial biomass carbon (MBC),water soluble organic carbon (WSOC) and readily oxidized organic carbon (ROC) were measured during the incubation.The mass fraction of carbon (C) in the generated BC ranged from 62.20%-80.01%,while hydrogen (H) ranged from 2.72%-5.18% and Oxygen (O) ranged from 15.98%-30.92%.The increasing temperature increased the mass fraction of C,while decreased the O and H mass content,as well as the ratio of H/C and O/C.The addition of BC significantly increased SOC,and the treatments amended with BC500 had the highest increments.Compared with the control treatment (CK),the addition of BC produced at temperatures below 400℃ increased the contents of MBC,WSOC and ROC during the incubation,at the end of the incubation,BC300 treatments significantly increased the contents by 38.25%,82.09% and 63.53%(<0.05),respectively;BC400 treatments significantly increased the contents by 26.07%,65.61% and 48.09%(<0.05),respectively;while lower contents of MBC,WSOC and ROC were found in the treatments amended with BC produced at temperatures above 400℃ after 40-60 d incubation.After 360 d of incubation,the contents of MBC,WSOC and ROC were significantly decreased by 0.27%,13.48% and 14.67% in BC500 treatments and 7.80%,14.66% and 15.79% in BC600 treatments (except for the MBC in BC500 treatment)(<0.05).The relative contents of ROC ranged from 3.39% to 15.65%,BC application decreased the relative content of ROC,suggesting that the increase was in proportion to the stability of organic carbon in the soil.Considering the content and quality of SOC,when the BC products were applied to the Loutu soil,500℃ was the optimal temperature for preparing apple-derived BC due to its significant increase of the soil organic carbon and a slight decrease of the relative content of soil active organic carbon.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201604058DOI Listing

Publication Analysis

Top Keywords

organic carbon
20
carbon
9
soil organic
8
soil active
8
active organic
8
mass fraction
8
increased contents
8
organic
7
soil
6
[effects biochar
4

Similar Publications

Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP).

Top Curr Chem (Cham)

January 2025

School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.

BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed.

View Article and Find Full Text PDF

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

One-step adsorptive purification of ethylene (C2H4) from ternary mixture comprising of acetylene (C2H2), ethylene (C2H4) and carbon dioxide (CO2) is a great challenge in the chemical industry. Herein, a microporous metal-organic framework (FJI-H38) has been reported, which possesses a high density of electronegative O/N binding sites and appropriate pore size. Notably, at 0.

View Article and Find Full Text PDF

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!