Polycyclic aromatic hydrocarbons (PAHs) pose a potential threat to ecosystems due to their mutagenic, carcinogenic, and teratogenic effects. Microbial degradation has been suggested as the best way to remove PAHs from contaminated environments. Screening of bacterial strains capable of efficiently degrading PAHs is the key to the bio-remediation technique. With the method of enrichment culture, the bacterial strain LX2, which can use pyrene as the sole carbon source, was isolated from sludge contaminated with PAHs. The strain was identified as ( sp. LX2) according to the results of the analyses of its morphology, physiology, and phylogeny of its 16S rDNA sequence. The degradation rate of pyrene by sp. LX2 was 32.1% after 21 days of cultivation at an initial pyrene concentration of 50 mg·L. Pyrene, 4,5-dihydro-, 2'-Hydroxypropiophenone, Phenol, and Protocatechuate were identified as the major metabolites by GC/MS analysis. Based on the identified metabolites, it was concluded that pyrene was degraded via two different routes by , namely the 'naphthalene' and the 'phthalic acid' routes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201708243 | DOI Listing |
Anal Chim Acta
January 2025
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India. Electronic address:
Background: The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:
Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
Pendant organic chromophores have been used to improve the photocatalytic performance of many metal-based photosensitizers, particularly in first-row metals, by increasing π conjugation in ligands and lowering the energy of the photoactive absorption band. Using a combination of spectroscopic studies and computational modeling, we rationalize the excited state dynamics of a Co(III) complex containing pendant pyrene moieties, , where = 1,1'-(4-(pyren-1-yl)pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium). displays higher visible absorptivity, and blue luminescence from pyrene singlet excited states compared with [ = 1,1'-(pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium)] in which the pyrene moiety is absent.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:
Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (Pseudomonas sp. PDC-1, Rhodococcus sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!