The phase transformation kinetic process of amphiphilic copolymer polyoxyethylene/polyoxypropylene/polyoxyethylene[PEO-PPO-PEO(F127)] blending polyvinylidene fluoride (PVDF) casting solution in an aqueous gel bath was investigated. The influences of F127 content on the PEO enrichment rate of PVDF membrane surface, membrane morphology and structural parameters were investigated by a total reflection fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM) and other analytical techniques. F127/PVDF blending membrane fouling behavior of bovine serum albumin (BSA) was evaluated by the static adsorption capacity, normalized filtration decay rate and membrane fouling resistance model. The results showed that the membrane delayed phase separation process increased, the membrane surface, internal pore size and porosity increased and the surface roughness increased with increasing F127 addition, and the increment of PEO enrichment rate on the membrane surface became stable when the F127 content reached 15%. F127 blending membranes with F127 contents ranging from 15% to 25% had a higher flux and BSA rejection, lower static adsorption capacity, slower flux decay rate, lower irreversible fouling index and smaller pore blocking resistance and cake layer resistance distribution coefficient, which showed a good anti-fouling property.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.2016.06.022DOI Listing

Publication Analysis

Top Keywords

membrane surface
12
amphiphilic copolymer
8
membrane
8
pvdf membrane
8
f127 content
8
peo enrichment
8
enrichment rate
8
membrane fouling
8
static adsorption
8
adsorption capacity
8

Similar Publications

The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.

View Article and Find Full Text PDF

Heteropolar two-dimensional materials, including hexagonal boron nitride (hBN), are promising candidates for seawater desalination and osmotic power harvesting, but previous simulation studies have considered bare, unterminated nanopores in molecular dynamics (MD) simulations. There is presently a lack of force fields to describe functionalized nanoporous hBN in aqueous media. To address this gap, we conduct density functional theory (DFT)-based ab initio MD simulations of hBN nanopores surrounded by water molecules.

View Article and Find Full Text PDF

Synaptic cleft geometry modulates NMDAR opening probability by tuning neurotransmitter residence time.

Biophys J

January 2025

Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA. Electronic address:

Synaptic morphology plays a critical role in modulating the dynamics of neurotransmitter diffusion and receptor activation in interneuron communication. Central physical aspects of synaptic geometry, such as the curvature of the synaptic cleft, the distance between the presynaptic and postsynaptic membranes, and the surface area-to-volume ratio of the cleft, crucially influence glutamate diffusion and N-Methyl-D-Aspartate receptor (NMDAR) opening probabilities. In this study, we developed a stochastic model for receptor activation using realistic synaptic geometries.

View Article and Find Full Text PDF

The detection of mercury ions (Hg) is crucial due to its harmful effects on health and environment. In this article, what we believe to be a novel dual-mode optical fiber sensor incorporating surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) is proposed for ultra-trace Hg detection. The sensing probe comprises gold (Au)/graphene oxide (GO) composite membrane structure and Au nanospheres (AuNPs), which are connected via double-stranded DNA.

View Article and Find Full Text PDF

In this paper, poly(diallyldimethylammonium chloride)(PDDA)/poly(sodium styrene sulfonate)(PSS) nanomembranes were deposited on the surface of long-period fiber gratings (LPFG) using the electrostatic layer-by-layer (LBL) assembly method, and the effect of NaCl on the modulation of LPFG double peaks by PDDA/PSS nanomembranes was investigated. The principle behind the emergence of double peaks was first explored using coupled mode theory, revealing that changes in the mode effective refractive index(RI) occur as the number of nanomembrane layers increases. The experimental results showed that under the conditions of PDDA with NaCl/PSS without NaCl and PDDA without NaCl/PSS with NaCl, double peaks do not appear in the spectra of LPFG as the number of thin film layers increases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!