[Effect of Sulfur to Quartz Sand Ratios on the Removal of High-Concentration Perchlorate in Packed-Bed Reactors].

Huan Jing Ke Xue

Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.

Published: February 2018

Three autotrophic packed-bed reactors, each with a different sulfur/quartz sand ratio(R1, 2:1; R2, 1:1; R3, 1:2,)were used to remove high-concentration perchlorate from contaminated water. The perchlorate removal efficiency, kinetics, and biofilm of the reactors were studied using different perchlorate concentrations and hydraulic retention times (HRTs). The perchlorate removal efficiency decreased with higher perchlorate concentration and shorter HRT, and the removal efficiency of R1 was higher than of R2 and R3. The maximum removal loading of R1 was 2.18 kg·(m·d)at an HRT of 3.2 h and perchlorate concentration of 300 mg·L. The half-order kinetics model fit the reactors' experimental data well; the reaction rate constants of R1, R2, and R3 were 8.036, 6.596, and 4.212 mg·(L·h). The yield of SO was greater than the stoichiometric yield of sulfur autotrophic reduction owing to sulfur disproportionation. The disproportionation was inhibited with a higher perchlorate concentration or shorter HRT. Moreover, disproportionation of R3 was the weakest because the SO yield of R3 was lower than of R1 and R2. The pH and alkalinity of the effluent increased with lower perchlorate concentration and shorter HRT. The development of biofilm in R2 and R3 was better than in R1. The secretion of extracellular polymeric substances can promote the formation of biofilm.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201706182DOI Listing

Publication Analysis

Top Keywords

perchlorate concentration
16
removal efficiency
12
concentration shorter
12
shorter hrt
12
perchlorate
9
high-concentration perchlorate
8
perchlorate removal
8
higher perchlorate
8
removal
5
[effect sulfur
4

Similar Publications

Background: Perchlorate, nitrate, and thiocyanate are well-known sodium/iodide symporter (NIS) inhibitors that disturb iodide uptake at the thyroid, affecting thyroid function. However, the associations between NIS inhibitor exposure and thyroid function are not well summarized in humans.

Objective: We aimed to summarize associations between NIS inhibitor exposure and thyroid function markers and to identify key information gaps for future studies.

View Article and Find Full Text PDF

Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO/PC (0.

View Article and Find Full Text PDF

Objectives: Perchlorates, nitrates, and thiocyanates constitute environmental endocrine disruptors; however, health damage caused by absorption through the respiratory tract remains poorly studied. We investigated the effects of inhalation of these pollutants on thyroid function and structure and serum metabolomics in pregnant rats.

Methods: We established a Sprague-Dawley pregnant rat model exposed to perchlorate, nitrate, and thiocyanate at different gestational stages and compared maternal serum thyroid function levels, foetal development, thyroid morphology, and pathological changes between exposed and non-exposed groups at different concentrations.

View Article and Find Full Text PDF

Viability and Motility of Under Elevated Martian Salt Stresses.

Life (Basel)

November 2024

Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany.

This study investigates the effects of three Martian-relevant salts-sodium chlorate, sodium perchlorate, and sodium chloride-on the viability and motility of , a model organism for understanding microbial responses to environmental stress. These salts are abundant on Mars and play a crucial role in forming brines, one of the few sources of stable liquid water on the planet. We analyze the survivability under different salt concentrations using colony plating.

View Article and Find Full Text PDF

Extensive carbonate precipitation has occurred on Mars. To gain insight into the carbonation mechanisms and formation processes under ancient Martian aqueous conditions, we examine the precipitation of carbonates resulting from atmospheric carbon fixation, focusing on interactions between various brines and silicate and perchlorate solutions in alkaline environments. The micro-scale morphology and composition of the resulting precipitates are analysed using ESEM micrographs, EDX chemical compositional analysis, X-ray diffraction, and micro-Raman spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!