Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on statistical activity data, emission factors, and source profiles, an emission inventory of anthropogenic-speciated VOCs in Jiangsu province in 2015 was calculated. The ozone formation potential (OFP) of VOCs was estimated by the maximum incremental reactivity (MIR). The result showed that the total anthropogenic emission amount of VOCs in Jiangsu Province was 1927.8 kt in 2015. Fossil fuel combustion, industrial processes, solvent utilization, biomass burning, vehicles, and storage and transport contributed 7.38%, 27.93%, 39.56%, 3.55%, 16.18%, and 5.39%, respectively. Suzhou, Nanjing, and Xuzhou were the three cities with the highest amount, contributing more than 200 kt of VOCs. The total amount of OFP from 56 ozone-precursor VOCs was 5429.5 kt. The contribution to OFP from the equipment manufacturing, vehicles manufacturing and building decoration was 30%-60% more than their contribution to the emissions. The coating VOC reduction would be more efficient for alleviating O pollution. The 10 VOC species with the largest OFP contribution were -xylene, ethylene, propylene, 1,3-butadiene, toluene, -xylene, 1-butene, ethylbenzene, 1,2,4-trimethylbenzene, and -ethyltoluene, which contributed 75.63% of the total OFP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201705218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!